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ABSTRACT 

In this study, we investigated an algebraic-type attack, known as the cube 

attack, against wireless networks. We implemented the cube attack in a wireless 

system, namely Bluetooth. We formally modeled the encryption function of E0 

Bluetooth key generator and automated the process of the cube attack on E0 of 

the factorization process (preprocessing phase). In this phase, an attacker finds 

as many maxterms (a term of the encryption function such that its co-factor is a 

linear nonconstant polynomial) as possible. In the actual attacking phase, the 

attacker solves the system of linear equations through a chosen plaintext attack 

and reveals useful information about the cryptosystem. The number of operations 

needed in the computational process is 21.12 and is considerably less than that of 

similar algebraic types of attacks, but it is limited to the output of the LFSRs at 

any clock cycle. The results of our analysis indicate that if an attacker is an 

unauthorized participant of the security protocol, then by manipulating some of 

the output bits of the LFSRs of two arbitrary clock cycles and intercepting the 

output bits of the entire machine the attacker then succeeds in finding the output 

bits of the LFSRs at any clock tick. 
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EXECUTIVE SUMMARY 

In this study, we investigated an algebraic-type attack, known as the cube 

attack, against wireless networks. We implemented the cube attack in a wireless 

system, namely Bluetooth. We formally modeled the encryption function of the 

E0 Bluetooth key generator and automated the process of the cube attack on E0 

of the factorization process (preprocessing phase). In this phase, an attacker 

finds as many maxterms (a term of the encryption function such that its co-factor 

is a linear nonconstant polynomial) as possible. In the actual attacking phase, the 

attacker solves the system of linear equations through a chosen plaintext attack 

and reveals useful information about the cryptosystem. The number of operations 

needed in the computational process is 21.12 and is considerably less than that of 

similar algebraic types of attacks, but it is limited to the output of the LFSRs at 

any clock cycle. The main contribution of this thesis is that if the attacker is an 

unauthorized participant of the security protocol, then by manipulating some of 

the output bits of the LFSRs of two arbitrary clock cycles and intercepting the 

output bits of the entire machine the attacker then succeeds in finding the output 

bits of the LFSRs at any clock tick. The most important question that needs to be 

answered next is how one can recover the encryption key of E0 after knowing the 

output bits of every LFSR at any clock that this study provides. 

Building on these results, the next stage of the research is to validate our 

integration of the cube-type attack into the Bluetooth encryption protocol. As 

demonstrated in this and other research we cited in this thesis, one needs to 

understand and formally evaluate the strength of a given cryptosystem, be able 

to evaluate its implementation to ensure that there are no flaws at that stage. The 

cryptosystem and the protocol it uses may be good but if poorly implemented will 

most likely be untrustworthy.  
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I. INTRODUCTION 

A. MOTIVATION 

Nowadays, there is great interest from the United States Department of 

Defense to move from wired communication systems to wireless systems. How 

to secure wireless cryptosystems, which are known to have suffered malicious 

attacks, is a question this thesis is attempting to answer. Sun-Tzu stated (400–

320 BC, translated Giles, 1910) “If you know the enemy and know yourself, you 

need not fear the result of a hundred battles.” As in that saying, there is a need to 

see and understand the mathematical theory hidden in modern types of attacks, 

and know how effective they are compared to the traditional exhaustive key 

searches in wireless security protocols (e.g., Bluetooth, Wi-Fi, Wi-Max). 

Bluetooth is a well-established wireless communications standard (IEEE 

802.15.1) between different devices (e.g., personal computers, laptops, mobile 

phones) that operates over a short range and at low power. For efficiency 

reasons, such as speed, size and power consumption, the system uses a stream 

cipher encryption (E0) instead of the widely-used block ciphers. Four linear 

feedback shift registers1 (LFSRs) are used in the algorithm, and a nonlinear 

Boolean function combines their output. The plaintext is then combined with the 

output key stream using an exclusive OR (XOR) producing the ciphertext. Wired 

Equivalency Privacy (WEP) IEEE 802.11 is another security protocol for Wi-Fi 

networks. It provides authentication and encryption. The key component of this 

protocol is the commonly used stream cipher RC4. IEEE 802.11, which has 

questionable functionality due to the wireless packet network structure, provides 

relatively weak encryption and a single-way authentication, and has no key-

distribution mechanisms. IEEE 802.11i updated the previous protocol and 

                                            
1 In digital circuits, a shift register is a type of sequential logic circuit mainly for storage of 

digital data, set up in a linear fashion, which has its inputs connected to the outputs in such a way 
that the data shifts down the line when the circuit activates. A linear feedback shift register is a 
shift register whose input bit is the output of a linear function of two or more of its previous states 
(from [23], p.19). 
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underwent final ratification, providing much stronger forms of encryption, an 

extensible set of authentication mechanisms, and key distribution capabilities. It 

includes an Advanced Encryption Standard (AES) - based encryption scheme. 

World Interoperability for Microwave Access (Wi-Max) is a family of IEEE 802.16 

standards that aims to deliver wireless data to a large number of users over a 

wide area at rates that rival those of cable modems. There are two schemes for 

data encryption supported in the 802.16 standard, the Advanced Encryption 

Standard (AES) and Triple Data Encryption Standard (3DES). Both of these 

schemes are block ciphers that operate on one block or chunk of data at a time, 

whereas stream ciphers can act on a single bit. AES handles a 128-bit block of 

data at a time, and has been shown to be very fast and easy to implement.  

This thesis will investigate from a theoretical perspective the effectiveness 

of several promising attacks against linear shift feedback registers (LSFRs)-

based ciphers, precisely we will look at correlation, algebraic, and cube attacks 

implemented in Bluetooth encryption (128-bit key size). 

Correlation attacks deal with distinguishing and recovering keys against 

mainly stream ciphers. That means that there is a statistically biased relation 

between the produced keystream and the output of certain LFSR sequences. 

Using the notion of correlation, there is a direct relation between the output state 

of an individual LFSR in the keystream generator and the output of the Boolean 

function that combines the output state of all LFSRs. Therefore, partial 

knowledge of the keystream (derived from the partial knowledge of the plaintext) 

is needed. In 2004, Lu and Vaudenay used a correlation attack and implemented 

it on an E0 Bluetooth keystream generator by applying a novel maximum 

decoding algorithm based on the Walsh transform (a feature of the Boolean 

functions), and succeeded in having key recovery of 392  operations after 

372 operations for precomputation [1]. One year later, Lu, Meier and Vaudenay 

proposed the use of conditional correlation attacks. The term “conditional 

correlation” describes the linear correlation of the inputs conditioned on a given 

sort output pattern of a nonlinear function with small input size. Their attack 
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implemented in output of the same key generator E0 of Bluetooth and disclosed 

the encrypted key in 382  operations using the first 24 bits of 
23.82 frames, thus 

improving the previous results of two of them [2]. One can also use algebraic 

attacks against LFSR-based stream ciphers. Algebraic attacks consist of 

expressing the whole cipher as a large system of multivariate algebraic equations 

that can be solved to recover the secret key. The unknowns in these equations 

occasionally represent the bits of the secret key. A major parameter that 

influences the complexity of such attacks is the degree of the underlying 

algebraic system. When the transition is linear, any keystream bit can be 

expressed as a function of degree deg( )f  in the initial state bits. However, 

despite the high degree of the filtering Boolean function that is used in the 

keystream generator, such an attack can be applied as soon as there are 

relations of low degree between the output and the inputs of the Boolean 

function. Armknecht proposed a scheme that solved the E0 cryptosystem in 

54.512 operations [3]. 

Dinur and Shamir described a type of algebraic attack called the cube 

attack [4]. The active assault on a cryptosystem requires the attacker to extract 

useful information from the bit stream. By skillfully choosing some publicly 

settable bits, the attacker may be able to replace the polynomial that represents 

the encryption function by a system of linear equations. Shamir and Dinur used 

this approach on the Trivium cipher and recovered the encryption key in 192  bit 

operations, which is the best result in the literature so far. Zhang et al. extended 

Shamir and Dinur’s approach to other polynomials f  from where they could find 

a lower degree polynomial g , so that the product fg  also has a lower degree. 

They applied this attack on the Toyocrypt cipher with re-synchronization, 

breaking the stream cipher in a few milliseconds on an ordinary PC [5]. 

All of the above-mentioned attacks are based on the cryptographic 

features of Boolean functions that have been an object of study in modern 

cryptography for about the last thirty-five years.  
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Β. THESIS OUTLINE 

The thesis consists of seven chapters. In Chapter I, the author gives a 

general outline of the work, describes the motivation for this research, and 

defines the problem that will be investigated. In Chapter II, the author describes 

the mathematical background necessary for the reader to understand the 

material that follows, the tools the author will use (Boolean functions, security 

protocol of E0, etc.), and the basic definitions of cryptosystems and wireless 

security. In Chapter III, the author examines the correlation and algebraic attacks 

and their theoretical background. In Chapter IV, the author details the cube 

attack concept and, in Chapter V, he models the Bluetooth keystream generator 

E0. In Chapter VI, the author details the tool he created in order to automate the 

cube attack and analyzes the results. The author ends this thesis with the 

conclusions reached from the research and provides future recommendations. 

C. THE PROBLEM 

In recent years, there has been great interest from the Department of 

Defense on substituting ground-wired networks (LANs) with short-range 

(Bluetooth) or medium-range (Wi-Fi) wireless networks. Several types of attacks 

have been successful at defeating the cryptosystems used by IEEE 802.11 and 

802.16 technologies, leading one to ask the question: how much trust should we 

place in the wireless encryption protocols?  

D. ACCOMPLISHMENTS OF THIS STUDY 

We formally modeled the encryption function of E0 Bluetooth key 

generator and automated the factorization process (preprocessing phase) of 

cube attack on E0. We applied the cube-type attack and reduced the search 

space for the output of the LFSRs of E0, a hard task since Bluetooth E0 uses a 

more complex encryption algorithm than the ciphers implemented so far. The 

main contribution of this thesis is that under the assumption that the attacker is 

an unauthorized participant of the security protocol, then by manipulating some 

of the output bits of the LFSRs of two arbitrary clock cycles and intercepting the 
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output bits of the entire encryption machine the attacker then succeeds in 

revealing the output bits of the LFSRs at any clock cycle. 
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II. BACKGROUND 

A. COMPUTER SCIENCE  

1. Security Protocol  

Definition 2.1: “A security protocol is a sequence of messages 
between two or more parties in which encryption is used to provide 
authentication or to distribute cryptographic keys for new 
conversations.” [6] 

The majority of the security protocols in computer networks are based on 

cryptography, which is why they are also called cryptographic protocols. In order 

to establish a secure communication there are a sequence of steps the 

participating parties must perform. These steps include the transmission of a 

message, possibly encrypted, participating names, cryptographic keys, random 

numbers, timestamps, ciphertexts and concatenation of these components. A 

security protocol aims to achieve certain goals upon its completion, like verifying 

the authenticity of the sender, ensuring the integrity of the transmitted message, 

protecting the confidentiality of the header and contents of the message, and 

providing for nonrepudiation. A security protocol is said to be flawed if it fails to 

achieve its claimed goals [7]. 

2. Wireless Security 

Security is an important concern in wireless networks because the radio 

frequency (RF) transmissions can be monitored by malicious people. A 

cryptosystem is a system used to encrypt a plaintext into ciphertext and at the 

other end to decrypt a ciphertext into plaintext. The cryptosystem is also used to 

ensure the four main goals of information security: confidentiality, integrity, 

authenticity and norepudiation.  

3. Cryptosystem 

Definition 2.2: “A cryptosystem is a five-tuple ( , , , , )P C K E D , where 
the following conditions are satisfied: 
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 1. P is a finite set of possible plaintexts. 

 2. C is a finite set of possible ciphertexts. 

 3. K is the keyspace, which is a finite set of possible keys. 

 4. For each K (i.e., for each bit that belongs to the 
keyspace), there is an encryption rule e  and a corresponding 

decryption rule d D . Each :e P C and :d C P are functions 

such that ( ( ))d e x x   for every plaintext element x P .” [8] 

The main property of all the above is the fourth property, where if a 

plaintext x  is encrypted using an encryption key e , the resulting ciphertext will 

be decrypted using a decryption key d , revealing the original plaintext x . 

For our work, we choose 2
mP C    where m is the length of the plaintext 

to be enciphered and 2 is the set of remainders when dividing integers by 2. 

Thus, 2 has two elements {0,1} and is called the set of integers modulo 2. 

2[ ]X  is the set of polynomials whose coefficients are integers modulo 2. 

4. Wireless Threats 

In common terms, a hacker is a person who legally or illegally gains 

access to a computer system to make changes to the system or to reveal 

security flaws [9, p. 379]. 

We consider three types of hackers. The whitehat hacker is a person that 

is hired from a company to find the flaws in a computer system. A blackhat 

hacker is a person who illegally accesses a computer system. There are also 

greyhat hackers, namely something in the middle, persons who access a 

computer system without authorization to make changes mostly for publicity 

purposes and to gain popularity [9, p. 393]. 

Some common types of attacks on wireless systems are discussed below 

[10]. In traffic analysis or passive eavesdropping, an adversary intercepts the 

traffic in a wireless local area network (WLAN). Active eavesdropping occurs 
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when the adversary inserts a message into the network, and from the response 

of the system derives useful information about the system such as response 

time. There is also message deletion on a network, which implies full control of 

the network by the attacker. Next is session hijacking, where the adversary might 

hijack a valid session and put authentication between legitimate users in dispute. 

There is also the man-in-the-middle attack, where the adversary must participate 

in the communication between the target parties. Before this happens, the 

adversary spoofs the authentication process of both parties and then breaks the 

connection between the two parties. The adversary pretends that he is the 

legitimate one of the two associated users.  

The Diffie-Hellman algorithm is vulnerable to the man-in-the-middle-attack, 

because no authentication occurs before the two parties exchange the secret 

keys [11]. Finally, denial-of-service (DoS) attacks have as a goal to deny the 

services that the target system provides. Denial-of-service (DoS) attacks may be 

launched over the Internet to target routers, servers, and firewalls. This makes 

them rapidly use all of their resources and unable to provide further services. 

There are policies and enforcement mechanisms that can be put in place to 

guard against such attacks, but consideration of these is outside the scope of this 

thesis. 

From a cryptanalysis point of view, the most common models of attack are 

as follows: 

1. Ciphertext-only attack: The adversary possesses a ciphertext, 

possibly by intercepting traffic. 

2. Known-plaintext attack: The adversary possesses a plaintext and 

its corresponding ciphertext. 

3. Chosen-plaintext attack: The adversary has access to the 

encryption cipher and he can choose a plaintext and construct the corresponding 

ciphertext, and he can repeat this process as many times as he likes. 
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4. Chosen-ciphertext attack: The adversary has access to the 

decryption cipher and he can choose a ciphertext and construct the 

corresponding plaintext, and he can repeat this process as many times as he 

likes. 

Here, the goal of the adversary is to determine the secret key that has 

been used by the cipher. Correlation, algebraic and cube attacks, the foundations 

of our results, are detailed in the following chapters. 

B. MATHEMATICAL THEORY 

The attack we have developed is based on several mathematical 

concepts. Below we provide a description of these. We assume that the reader 

has some familiarity with the concepts from Abstract Algebra and Boolean 

functions. 

At a very high level, a Boolean function outputs a single bit result (0 or 1) 

for each possible combination of values from many Boolean variables. The 

algebraic environment of Boolean functions is a vector space (defined below) of 

dimension n over the binary field. The Boolean output consists of the bit values 

{0,1}, with “XOR” as addition and “AND” as multiplication. 

1. Vector Space 

A field is a set endowed with two operations, satisfying a plethora of 

conditions. We will use mostly the binary field 2  whose addition and 

multiplication operations are defined as follows:  

0 0 0

0 1 1 0 1

1 1 0

0 0 0

1 0 0 1 0

1 1 1

 
   
 
 
   
 
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Definition 2.3: Let   be an algebraic field. A vector space over   (or  -

vector space) consists of an abelian (commutative) group V under addition 

together with an operation of scalar multiplication of each element of V by 

each element of  on the left, such that for all ,a band , V   the 

following conditions are satisfied: 

 .a V   

 ( ) ( ) .a b ab   

 ( ) ( ) ( ).a b a b      

 ( ) ( ) ( ).a a       

 1 .   

The elements of V are vectors and the elements of the algebraic field 

F are scalars. When only one field   is under discussion, the reference to  is 

dropped and instead refers to a vector space [12]. Specifically, let nV be the 

vector space of dimension n over the two-element field 2 . For two vectors in nV , 

say 1( ,..., )na a a  and 1( ,..., )nb b b , the scalar product is defined as 

1 1 ... n na b a b a b    , where the multiplication and the addition   are over 2  

(This operation should not be confused with the direct product of vector spaces). 

The operation   on vectors is defined by 1 1( ,..., )n na b a b a b  . 

 

 

When one is dealing with the vector space 2
n

nV    (where 2 2 2 2...n          

represents the set of all n-tuples of 0’s and 1’s) then the following operations 

apply: 

 Addition  

1 2 3 1 2 3 1 1 2 3 3( , , ,..., ) ( , , ,..., ) ( , , ,..., )n n n nv v v v w w w w v w v v w v w       

 Multiplication 

 Scalar Multiplication 

n-times 
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1 2 3 1 2 3 1 1 2 2 3 3( , , ,..., ) ( , , ,..., ) ...n n n nv v v v w w w w v w v w v w v w       

 Vector Intersection 

1 2 3 1 2 3 1 1 2 2 3 3( , , ,..., ) ( , , ,..., ) ( , , ,..., )n n n nv v v v w w w w v w v w v w v w   

2. Vector Space and Correspondence of the Finite Field 

In abstract algebra, a finite field is any field with a finite number of 

elements. For every prime p and positive integer n there is exactly one finite field 

(up to isomorphism) of order np . The field (2 )nGF  is usually referred as the 

Galois field of order 2n  [12, p. 300]. 

 

Definition 2.4: A polynomial is primitive if it is the minimal polynomial of a 

primitive element of the finite extension field ( )nGF p . In other words, a 

polynomial ( )P X , with coefficients in ( ) /GF p p   , is a primitive 

polynomial, if it has a root α in ( )nGF p  such that  22 30,1, , , ,...,
npa a a a


 is 

the entire field ( )nGF p  and ( )P X  is the smallest degree polynomial 

having α as root in ( )nGF p . 

Any finite field of dimension n over ( )GF p  can be constructed by taking a 

primitive polynomial p which is of degree n (p is primitive and deg ( )P X n ). 

For the Galois field GF(2) we have the correspondence 2(2 )n nGF   : 

 12
0 1 1

[ ]
(2 ) ...n n

n

X
GF a a X a X

P


    
 


, 2ia  . 

Given such a representation of (2 )nGF by a polynomial P, to every element 

1
0 1 1... n

na a X a X 
    we associate the vector 0 1 1 2( , ,..., ) n

n na a a V   . 

This does not mean that both structures are the same; rather, it means that there 

is a bijective correspondence between those two structures. 
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Example 2.5: 

Assume one is working in 3(2 )GF , thus   33 2 1 12[ ]
(2 ) 0,1,...

X
GF a

P
  

 


. 

One has to use a primitive polynomial of degree 3, say 3 1p x x   . 

 

3(2 )GF  

 

3V  

 

0  000  

01 a  001  

a  010  

2a  100  

3 1a a  (1) 011 010 001   

4 2a a a  (2) 110 100 010   

5 2 1a a a    111 100 010 001  

6 2 1a a   101 100 001   

7 1a   001  

Table 1.   Correspondence between Finite Fields and Vector Spaces  

Observations: 

(1) 3 31 0 1a a a a       since a  is a primitive element.  

(2) 4 3 2( ) ( 1)a a a a a a a     ; continue in that fashion up to the element where 

there is repetition ( 7a ). 
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3. Boolean Function 

Definition 2.6: A Boolean function f in n variables is a map from a vector 

space nV  of dimension n  over 2F  to the two-element field 2 . The (0,1) 

sequence generated by the Boolean function f  is defined by 

0 1 2 1
( ( ), ( ),..., ( ))nf v f v f v


 and is called the truth table of f , where 

0 1 2 1
(0,..., 0,0), (0,..., 0,1),... (1,...,1,1),nv v v


    ordered lexicographical. The 

(1,-1) sequence of f is defined as 0 1 2 1
( )( ) ( )(( 1) , ( 1) ,..., ( 1) )nf vf v f v    .  

Any function that is defined in a vector space over a finite field, in particular in 

2 is in fact a polynomial [13]. The idea is that if one defines a function that takes 

any vector into an output, then by taking the degree of the polynomial high 

enough, one can find appropriate coefficients so that particular polynomial will 

match the dataset. 

“A Boolean function on nV  can be expressed as a polynomial in 

2 2
2 1 1 1[ ,..., ] / ( ,..., )n n nx x x x x x  ; the algebraic normal form (ANF) is  

1
1( ) n

n

aa
a n

a V

f x c x x


  , where 2ac  and 1( ,..., ).na a a  Moreover, ( )a
x a

c f x


  

where x a means that i ix a for all 1 i n  .The algebra of all Boolean functions 

on nV will be called n ” [13, pp. 5–6]. 

The simplest Boolean functions are the constant functions 0 and 1. 

 

Example 2.7: 

Assume 3n  , thus working on 3V . 

Let 3 2 1 2 3 1 2 3: : ( , , )f V f x x x x x x    be the Algebraic Normal Form (ANF) of a 

Boolean function f.  
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3V  

(Lexicographical Order) 

Labeling of values: 

3 2 1x x x  

f  

000 0 

001 0 

010 0 

011 1 

100 1 

101 1 

110 1 

111 0 

Table 2.   Truth Table of f   

Thus, the Boolean function has the following truth table (Table 2): 00011110f  . 

One can infer the ANF of f  having the sequence of bits of that Boolean function 

and vice versa. 

Definition 2.8: An affine function ,a cl on nV  is a function that takes the 

form: , 1 1( ) ...a c n nl x a x c a x a x c       , 

where 1 2 2( , ,..., ) ,n na a a a V c   . If 0c  , then ,0 ( )a al l
 
is a linear function 

[13, p. 6]. 

 

Definition 2.9: Let   be a set. If there are exactly n  distinct elements in 

  where n  is a nonnegative integer, we say that  is a finite set and n  is 

the cardinality of . The cardinality of   is denoted by   [14]. 

 

Lemma 2.10: The number of all affine functions in n variables is 12n
nA  . 
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Proof: By definition, an affine function depends on 1n   parameters 

1 2, ,..., ,na a a c   each of which taking values 0,1 . Therefore, the number of such 

choices is 12n  The set of all affine functions is a small class of Boolean 

functions.  

 

Additionally, one should note that the set of all linear functions nL  has 2n
nL  , 

since c=0. 

■ 

Lemma 2.11: The number of all Boolean functions in n variables is 

22
n

nB  . 

Proof: By definition, a Boolean function f is a mapping: 2 2:
n

nVf X Y   . 

Since the cardinality of the set for all linear functions is 2n , the following assertion 

holds for all functions: 

22
nX

functions Y   and so 22
n

nB  . 

■ 

Example 2.12: 

For 4,n   the number of Boolean functions is 
42 162 2 . For 6,n   the 

number of Boolean functions is 
62 642 2 . As can be seen from these examples, 

the class of Boolean functions becomes extremely large. From a cryptographic 

point of view, one wants to count the elements of such a set because if the set is 

small, then one can implement an exhaustive approach and do whatever 

analysis one wants to do. 

4. Hamming Weight and Distance 

In coding theory, the Hamming distance between (two) bit strings of the 

same size is the number of bits where they differ. The Hamming distance is a 

metric and represents the minimum number of necessary substitutions to 

transform a bit string into another. 
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For example, if 101001101f   and 011011100g  , then their Hamming distance 

is ( , ) 4d f g  . The Hamming weight of the string is the number of 1’s it has, its 

distance from the 0-vector. Thus, in the previous example ( ) 5, ( ) 5wt f wt g  . 

The Hamming weight of a Boolean function f is the number of 1’s in the truth 

table of f . More formally: 

Definition 2.13: The Hamming weight of a vector nx V , denoted by 

( )wt x , is the number of 1’s in the vector x . For a Boolean function on nV , 

let { : ( ) 1}f nx V f x    be the support of f . The Hamming weight of a 

function f is the Hamming weight of its truth table, that is the cardinality of 

1(1)f  or equivalently ( ) fwt f   .The Hamming distance between two 

functions 2, : nf g V   , denoted by ( , )d f g is defined as: 

( , ) ( )d f g wt f g   

5. Walsh Transform 

The Walsh or Handamard transform is a type of discrete Fourier transform 

of a Boolean function. Using the Walsh transform, correlations in combining 

functions may be identified.  

 

Definition 2.14: “The Walsh transform of a function f on a vector space 

nV of dimension n  over 2F  (with the values of f  taken to be real numbers 

0 and 1) is the map ( ) : nW f V R , defined by  

(2.1) 

 

 

( )( ) ( )( 1)
n

w x

x V

W f w f x 



 
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This defines the coefficients of f with respect to the orthogonal basis of 

the group characters ( ) ( 1)w x
wQ x   ; f can be recovered by the inverse Walsh 

transform:  

 
( ) 2 ( )( )( 1)

n

n w x

x V

f x W f w 



   (2.2) 

The Walsh spectrum of f  is the list of 2n Walsh coefficients given by (2.1) 

as w  varies” [13, p. 8]. 
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III. CORRELATION AND ALGEBRAIC ATTACKS  

A. INTRODUCTION 

In recent years where communication, computer-based systems have 

been commonly used in both commercial and military environments, stream 

ciphers remain dominant since a stream cipher provides speed to the encryption 

process and allows synchronization between data and voice in broadband 

channels. Short-range (Bluetooth) and medium-range (Wi-Fi) wireless networks 

use stream ciphers to provide authentication and data encryption between a host 

and wireless access points. Bluetooth uses an E0 stream cipher and WEP uses 

RC4 stream cipher that provides weak encryption. Wi-Fi uses the IEEE 802.11i 

(Wide Protected Access 2- WPA2) protocol for encryption. WPA2 uses the block 

cipher advanced encryption standard (AES). World interoperability for microwave 

access (Wi-Max) is an IEEE 802.16 standard that aims to deliver wireless data 

fast and over a long range. Wi-Max uses a combination of AES and 3DES (data 

encryption standard). In this chapter, we present the foundations of correlation 

and algebraic attacks. We review the basic features of these attacks and discuss 

the results of the implementation of these attacks on stream ciphers used in a 

wireless environment such as Bluetooth. 

B. PROPERTIES OF BOOLEAN FUNCTIONS 

The Boolean functions are polynomials of n variables and bit output, are 

used in several cryptographic applications in wireless systems and must satisfy 

several cryptographic criteria. Although the quality of these properties depends 

on the specific cryptosystem that is implemented, the properties that a Boolean 

function must focus on are balance, nonlinearity, correlation immunity, and high 

algebraic degree, just to mention a few.  
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1. Balance of Boolean Functions 

A Boolean function is balanced if its output is equally distributed, which 

means that its Hamming weight is 12n , where n is the number of variables. 

2. Nonlinearity 

The nonlinearity of a Boolean function f , f , is defined as the minimum 

Hamming distance between the function itself and every single function that 

belongs to the set of the affine Boolean functions. Thus, 

min ( , ),
n

f d f


    

where n  is the class of all affine functions on vector space nV  [13, p. 7]. 

3. Correlation and Algebraic Immunity 

A Boolean function f  has correlation immunity of order k if its values are 

statistically independent of any subset of k input variables. Correlation is a useful 

concept in cryptanalysis, because it may reveal to an attacker how an encryption 

function f behaves if one slightly changes the input. Furthermore, a Boolean 

function with low-order degree of correlation immunity is more susceptible to 

attacks on the system than a Boolean function of high-order degree with 

correlation immunity. Siegenthaler in [15] showed that a high-algebraic degree 

will restrict the maximum possible correlation immunity when the correlation 

immunity k of a Boolean function f of degree d and n variables for a given set of 

input variables satisfies the relation .k d n   

Definition 3.1: An annihilator of a polynomial f is a nonzero polynomial 

g , such that 0.fg    

The above definition motivates the concept of algebraic immunity ( )AI f of a 

Boolean function f  of degree d  and of n  variables. ( )AI f is the least value of  
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d  such that either f  or 1f  has an annihilator of degree d . In other words, 

given f and g  of minimum degree d , such that 0fg   or ( 1) 0f g  , then the 

algebraic immunity is d . 

Example 3.2: 

Assume 1 2 3 4 1 2 3 4( , , , )f x x x x x x x x  and 1 2 3 4 1 2 3 4( , , , )g x x x x x x x x    , then 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 0fg x x x x x x x x x x x x x x x x     , since 1 1 1 2 2 2, 3 3 3 4 4 4, , .x x x x x x x x x x x x     

Notice that f is of degree 4 with four variables whereas g is of degree 1. 

                   ■ 

C. CORRELATION ATTACKS 

Correlation and fast or conditional correlation attacks [1], [2] use a biased 

relation between keystream and certain LFSR output sequences that have to be 

found. A correlation attack is a probabilistic approach of attacking. When an 

attacker has access to the output of the LFSRs of a cipher of a cryptosystem and 

the output of a Boolean function that combines the outputs of all the LFSRs, then 

he may find the initial values of the LFSRs by simply guessing the initial values. 

The following example illustrates the correlation attack process. 

Example 3.3: 

Suppose that a keystream generator consists of three LFSRs, say , ,x y z , 

of lengths three, four, and five respectively. Assume that the combiner Boolean 

function is of the form: 

( , , )f x y z xy yz z    

Then, the initial value of the key must be 12 = 3+4+5  bits long. 

Suppose that the initial values of the LFSRs are 011, 0101, 11100x y z   , and 

for bits 0,1,2,...23i   the following evaluations hold: 
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011100101110010111001011

010110010001111010110010

111000110111010100001001

111100100110010110001011

i

i

i

i

x

y

z

k






 

where ik is the keystream. 

The truth table of the combined Boolean function f  is of the following form: 

x y z f 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 

where 01000111f  . 

By comparing the columns of variables x, y with f one can easily observe that 

( , , )f x y z x with probability ( ) 3/ 4P f x   and ( , , )f x y z z  with probability 

( ) 3 / 4P f z  . Assume that the attacker has access to the following keystream 

table: 

111100100110010110001011ik   

The attacker is trying to find the initial values of the LFSRs and he guesses that 

111x  , and he then generates the first 24 bits of x and compares it to ik  as 

follows: 
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111001011100101110010111

111100100110010110001011
i

i

x

k




 

Comparison of the two shows that only 12 out of 24 bits match exactly, so the 

question is this: can an attacker make a better guess? If the attacker guesses 

011x   and he then generates the first 24 bits of x and compares it to ik , he will 

find 21 out of 24 bits, which is a better match, so the attacker has found the initial 

values of x  as seen below: 

011100101110010111001011

111100100110010110001011
i

i

x

k




 

If the n LFSRs have lengths 0 1 1, ,..., nn n n  , then the correlation attack needs 

0 111 112 2 ... 2 nn nn     effort, which is much less than the work required for the 

exhaustive key search that is 0 1 1... 12 nn n n     . 

The main derivatives of correlation attacks are fast correlation attacks and 

conditional correlation attacks. Lu and Vaudenay [1] in 2004 introduced a fast 

correlation attack and implemented it in a Bluetooth E0 keystream generator 

(Chapter V details an E0 keystream generator). Despite the fact that correlations 

of E0 have been discussed but only for a short sequence of bits, Lu and 

Vaudenay formulated a powerful computation method of correlations using a 

recursive expression based on the maximum likelihood decoding (MLD) 

algorithm by means of a fast Walsh transform (FWT). In order for their attack to 

succeed, they built a distinguisher for E0 based on the largest bias they found. 

Their best result, as it concerns E0, is limited to 372 operations for precomputation 

and 
392 operations for the actual keysearch. 

The conditional correlation attack takes advantage of the linear correlation 

of the inputs conditioned on a known output pattern of a particular nonlinear 

function and was proposed by Lu, Meier and Vaudenay in 2005. The best result 

that they obtained on a Bluetooth E0 keystream generator was in 382 operations 

required the first 24 bits of 23.82  frames [2]. 
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D. ALGEBRAIC ATTACKS 

At a very high level, algebraic attacks on stream ciphers based upon 

LFSRs recover the secret key by solving an over-defined system of multivariable 

algebraic equations. One successfully does so by exploiting multivariable 

relations involving keybits and output bits, this process becomes more efficient 

once relations of low degrees can be found. The idea of algebraic attacks is 

based on the capability of an attacker to solve a system of nonlinear multivariable 

equations of low degree. Courtois and Meier introduced algebraic attacks [16] in 

2003. Algebraic attacks have been successful in breaking some keystream 

generators like Toyocrypt and LILI 128 by drastically reducing the computation 

time needed. The key idea is to generate low-degree equations by multiplying the 

initial equations by well-chosen multivariable polynomials. The basic methods 

used to solve the derived system of equations are the Gröbner basis algorithm or 

linearization methods like extended linearization (XL) [17].  

Courtois and Meier introduced three scenarios (S3a, S3b and S3c) under 

which low-degree relations may exist in order to implement algebraic attacks 

[18]. 

 S3a - assume that there is a function g of low degree such that 

0fg  and fg is a low-degree function, where f is a Boolean encryption 

function 

 S3b - assume that there is a function g of low degree such that 0fg  , 

where f is a Boolean encryption function 

 S3c. assume that there is a function g of high degree and f is of high 

degree, such that 0fg  and fg is of a low-degree function, where f is a 

Boolean encryption function 

Meier, Pasalic and Carlet [19] described a method to find all possible annihilators 

of a given Boolean function f and an algorithm which determines whether a 

Boolean function of n variables has low algebraic immunity. 
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Several algorithms have been introduced that assist in reducing the 

complexity of solving systems of multivariable equations, but there is no silver 

bullet, since Garey and Johnson [20] indicate that solving such systems of 

multivariate polynomial equations is a nonpolynomial (NP)-hard problem. The 

classical algorithm for solving such a system of equations is Buchberger’s 

algorithm, which transforms the polynomial equations to a Gröbner basis [21]. A 

Gröbner basis is a set of multivariate polynomials that has the property of 

Gaussian elimination (one may solve one variable at a time). Every set of 

polynomials can be transformed into a Gröbner basis. The solution to a Gröbner 

basis is the same as for the original equation. The linearization algorithms, like 

XL, have the following steps: 

 Find an over-defined equation 

 Replace each monomial with a new variable 

 Solve the new system of equations as a linear system 

 

Example 3.4: 

Assume the following system of equations : 

1 2 3

2
3 1 2

1 2 1

2 2
1 1 2 3

2 2
3 1 2

2
1 2

0

1 0

0

0

0

0

x x x

x x x

x x x

x x x x

x x x

x x

  

  
 

  

  

 

 

By substitution, 2 2
1 3 2 1 2 3 1, , ,u x u x x u x    

The following system of linear equations is then obtained: 
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1 2 3

1 2

2 1

3 2 1

1 3 2

3 2

0

1 0

0

0

0

0

x x x

u u

u x

u u u

u u x

u x

  
  
 

  
  
 

 

which is easy to solve. 

In 2003, Armchnecht and Krause [22] applied algebraic attacks in wireless 

systems like Bluetooth E0 in which the key could be recovered in 68.482 operations 

after the adversary had knowledge of 23.072 keystream bits. Armchnecht in 2004, 

by using a precomputation step, reduced the complexity to 54.512 operations after 

the adversary had knowledge of 23.442 keystream bits [23].  

E. CONCLUSION 

In this chapter, the author reviewed some of the recent types of attacks on 

wireless systems, namely correlation and algebraic attacks. It seems that 

correlation attacks are faster in the computational process in wireless encryption 

systems, like Bluetooth, which use stream ciphers, yet algebraic attacks require 

less data during the preprocessing phase. In the following chapters, the author 

will investigate a recently introduced type of algebraic attack, the cube attack, 

which will be applied on the E0 keystream generator.  
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IV. CUBE ATTACK  

A. INTRODUCTION 

At Crypto Conference 2008, Shamir described a new type of algebraic 

attack, the cube attack. In September 2008, Dinur and Shamir published a paper 

on eprint [4] entitled “Cube Attacks on Tweakable Black Boxes Polynomials” 

describing their approach. The cube attack is a generic attack that may be 

applied to block ciphers, stream ciphers, or even keyed hash functions without 

necessarily having knowledge of the internal structure of the cipher, as long as at 

least one output bit can be represented by a polynomial of low degree of the 

secret and public variables. Their approach is based on the basic algebraic 

cryptanalysis concept, which attempts to lower the degree of the polynomial 

equations that represent a cryptosystem by polynomials of lower degree. The 

polynomial equations used to describe a cryptosystem are variants derived from 

a master polynomial by setting some variables to any possible value (0 or 1) and 

then summing the results. They call this attack the cube attack  

“...since it sets some public variables to all their possible values in n , 

( 1)d  -dimensional Boolean cubes, and sums the results in each cube, where d  

represents the degree of the polynomial and n  is the number of variables."  

[4, p. 5] 

The mathematical concepts we use in this chapter are Boolean functions 

(polynomials of n variables and bit output), factorization of multivariable 

equations to reveal linear co-factors called superpolys, and solving a system of 

linear equations. 

B. BACKGROUND/KEY OBSERVATIONS ON THE CUBE ATTACK 

Actually, the idea of the cube attack is not new. Variations of this attack 

have been proposed in [24], [25], [26]. These approaches are mostly based on 

the use of heuristics that sum the output values of Boolean cubes of publicly-
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known variables. They are referred to as chosen-IV statistical attacks and are 

mainly applicable against stream ciphers. However, the cube attack has a more 

wide range of targets and may be applied to block ciphers. 

In the cube attack, when the master polynomial is random one may 

eliminate with high probability all of the nonlinear terms by using, for example, a 

chosen plaintext attack, thus reducing the complexity from polynomial time to a 

system of linear equations that is (relatively) easy to solve. Dinur and Shamir 

implemented their cube attack on the Trivium stream cipher and recovered the 

encryption key in 192  bit operations. The previous best-known attempt was made 

by Fischer, Khazaei and Meier in [27], using a chosen-IV statistical analysis. 

They succeeded in key recovery of 552 bit operations. The master polynomial was 

in algebraic normal form (ANF), which means that it must be in sum of products 

of variables.  

The following theorem expresses the concept of the cube attack.  

Theorem 4.1: [from 5] Let ( )f x  be a polynomial in n variables of 

degree d . Suppose 0 k d   and t  is the monomial 0 1 1... kx x x   . Suppose f can 

be written in the following form: 

 ( ) ( ) ( ),t tf x tP x Q x       (4.1) 

where none of the terms in ( )tQ x  is divisible by t . Note that deg( ) .tP d k   

Then, the sum f over all 0 1 2( ,..., ) k
kx x F  , 

0 1 2( ,..., ) k
kx x F

f
 
 ,considered as a 

polynomial in k , equals  

                                                k   

1 1(1,...,1, , ,..., )t k k nP x x x   

and hence is a polynomial of degree at most d k .  
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Proof: Consider the following equality: t tf tP Q  .  

Then, 

0 1 2

1 1
( ,..., )

(1,...,1, , ,..., )
k

k

t t k k n
x x F

tP P x x x


 



0 1 2( ,..., )

.
k

k

t
x x F

Q
 

 
 

However, 
0 1 2( ,..., )

0
k

k

t
x x F

tP
 


 
since in order for the summation to be different from 0, 

all 0, 1..., 1kx x   , hence 

0 1 2

1 1
( ,..., )

(1,...,1, , ,..., ).
k

k

t t k k n
x x F

tP P x x x


 


  

Furthermore, tQ is a sum of monomials that are not divisible by t. Let m be any 

one of these monomials.  Since m is not divisible by t, then ix  is excluded for 

0 1i k   .For instance, if 0x
 

is excluded,
 

then the sum across all 

0, 1 2( ... ) k
kx x F  can be further split into two sums: the sum for 0 0x   and the sum 

for 0 1x   .These two sums are equal since 0x does not appear in m.  

Therefore, 

0 1 2 0 1 2( ,..., ) ( ,..., )

0 0.
k k

k k

t
x x F x x F

m Q
  

    ■
 

The polynomial f  written in the form of Theorem 4.1 is called a master 

polynomial.  

The following example illustrates Theorem 4.1. 

Example 4.2: 

Consider given a master polynomial f  of degree d = 3 and of four 

variables, two known variables 1 2( , )x x  and two unknown or secret variables 

3 4( , )x x . Suppose f  has the following algebraic normal form (ANF): 
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1 2 3 4 1 2 3 1 2 4 2 3 4 1 3 4 1 2 1 1 3 4 3( , , , ) 1f x x x x x x x x x x x x x x x x x x x x x x x          , (4.2) 

Third-degree polynomials with four variables may have 
4 4 4 4

3 2 1 0

15
                 
       

 

possible terms. From these 15 terms, five terms are going to be linear and the 

remaining ten terms are going to be nonlinear. To eliminate all the nonlinear 

terms using Gaussian elimination, and in order to eliminate all the nonlinear 

terms, at least ten such polynomials of the total 102  possible terms, over (2)GF , 

are needed. If the two known variables 1 2,x x  are set in all their possible values (0 

or 1), then one can construct 22 4  derived polynomials, which may not be 

sufficient. 

 

1x  2x

 

Derived Polynomials 

from f  

Formal Sum over all values of 

1 2( , )x x  

0 0 
4 3 1x x   

0 1 
3 4 4 3 1x x x x    

1 0 
3 4 4x x x  

1 1 
3 1x   

 

 

 2
1 2

1 2 3 4 3 4

( , ) 0,1

( , , , ) 1
x x

f x x x x x x


   ,[1]

Table 3.   Formal sum of known variables 

The points (0,0),(0,1),(1,0),(1,1) can be viewed as a corner of a square of 

two dimensions (Figure 4.1). 
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(1,0) (1,1)

(0,0) (0,1)
 

Figure 1.   Square of Two Dimensions 

This concept may scale to more than two variables. For example, if there 

are three variables then the evaluation will be for eight points, and these 

correspond to the corners of a cube in three dimensions, which is why Dinur and 

Shamir called their process the cube attack (Figure 4.2). 

 

(1,1,0) (1,1)

(1,0,0) (1,0,1)

(0,1,0) (0,1,1)

(0,0) (0,0,1)(0,0,0)

(1,1,1)

 

Figure 2.   Cube of Three Dimensions 



 32

In a similar fashion, once the function f  is factored with respect to 

coefficients 1 2,x x  

 1 2 3 4 1 2 3 4 2 3 4 1 3 4 1 1 3 4 3( , , , ) ( 1) ( 1)f x x x x x x x x x x x x x x x x x x x          ,  (4.3) 

 

where:  1 2It x x  is the maxterm 

3 4( ) 1
It

P x x x    is the superpoly, a linear-cofactor or linear 

nonconstant polynomial 

  2 3 4 1 3 4 1 1 3 4 3( ) 1
It

Q x x x x x x x x x x x x        is the remainder 

 

The maxterms of the polynomial f are indexed by  1, 2I  , a subset of size 2, 

where  1,2,...,I n  is the index set of the variables that are multiplied together. 

 

Theorem 4.1 is a basic theorem and is the tool used below to cryptanalyze the 

Bluetooth E0 keystream generator.  

 

Definition 4.3 [from 4]:. A maxterm of f is a term It  or cube such that the 

degree of the superpoly deg( ) 1
It

P  , where 
It

P is a linear nonconstant polynomial.  

Based on Theorem 4.1 and illustrated in Example 4.4, the sum of the 

2k polynomials derived from the initial polynomial f  by assigning all possible 

values to the k variables eliminates all terms, except those that are contained in 

the superpoly in f . 
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Observation 4.4: Using the process described in Theorem 4.1, the 

monomial coefficients can be computed once all the values of the corresponding 

variables are summed. 

 

Example 4.5: 

Let f be the following monomial: 

1 2 3 4 5 1 2 3 5 3 4( , , , , )f x x x x x x x x x x x   . 

Then all values of 1 2 3 4 5, , , ,x x x x x  are summed as follows: 

(0,0,0,0,0) (0,0,0,0,1) (0,0,0,1,0) (0,0,1,0,0) ... (1,1,1,1,1) 0f f f f f      . 

The value of the expression above represents the coefficient of the monomial 

1 2 3 4 5x x x x x . Thus, 

1 2 3 4 5 1 2 3 5 3 4 1 2 3 4 5( , , , , ) 0f x x x x x x x x x x x x x x x x     . 

 

Observation 4.4 may be generalized. Assume that the encryption function is of 

the form:  

 ( , )z f x v , (4.4) 

Equation (4.4) actually represents the encryption function of a stream cipher that 

takes as input n-secret bits x  and m-known bits v  of initialization vector (IV) and 

outputs a keystream bit z . 

Initially, the initialization vector bits v  are fixed over 2F , and T is the set of all 

possible values of v , so 2mT  .  

If ( , )f x v  is summed over v T , then we can write: 

 ( , ) ( )
v T

f x v L x


 , (4.5) 
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In accordance with Theorem 4.1, if ( ) 0L x   then a maxterm can be found and 

therefore one linear relation of the key bits is obtained. Therefore, in order to 

obtain 1n   relations one needs to use the same f with different maxterms. 

Since there are n  such linearly independent relations of the key bits, the secret 

key can be found by using Gaussian elimination or a chosen plaintext attack.  

The cube attack may be completed in two phases: the preprocessing 

phase where the attacker finds as many maxterms as possible, and the actual 

attacking phase where the attacker solves the system of linear equations. 

C. PREPROCESSING AND ONLINE PHASE 

1. Preprocessing Phase 

Assume that the following relation represents an encryption function of a 

cipher represented in accordance to theorem 4.1 

 1 1( ,..., ) ( ) ( ,..., )
I In I t t nf x x t P x Q x x  , (4.6) 

and let IC  represent the summation cube of a set of variables with index I .    

Then, if It  is a maxterm of the encryption function f  in (4.6), then the attacker 

may compute the free term of ( )
It

P x  by summing all the values of ( )f x  over all 

variables modulo 2 that are zero except those that appear in IC ,  

0 1 2

1 1
( ,..., )

(1,...,1, , ,..., )
k

k

t k k n
x x F

f P x x x


 


  

Then the attacker can compute the coefficient of ix in the linear expression ( )
It

P x  

by summing modulo 2 all values of ( )f x  for input vectors equal to 0 except at ix  

which is 1, as detailed in the proof of Theorem 4.1. [4]  
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In the preprocessing phase, the attacker is trying to find as many 

maxterms 1( ,..., )nv v  as possible and their corresponding superpolys 1( ,..., )nx x , in 

the following manner: 

1 2 3 1 2 3( , ) ( ) ...f x v v v v x x x     

4 5 6 2 4( , ) ( ) ...f x v v v v x x    

3 5 4 6( , ) ( ) ...f x v v v x x    

.................................................. 

2 4 5 6( , ) ( ) ...f x v v v x x    

When the attacker has no information about the structure of the encryption 

function, then it can be considered as a blackbox polynomial. The attacker can 

reconstruct the superpolys using linearity tests. All he can do is query the 

function f , meaning that he can pass in a value x  of and get a value of ( )f x . 

Because in a linear expression the coefficient of any variable ix is 1 if and only if 

changing the value of ix changes the value of the expression, the free term may 

be computed by setting all variables to 0. 

2. Online Phase 

In this phase, the attacker has to solve a system of linear equations where 

each linear equation is the co-factor 
It

P of the maxterm It . The attacker simply 

applies a chosen plaintext attack on the cipher. The attacker has to find as many 

linear relations as possible in order to solve the system of linear equations. 

D. EXTENSIONS OF THE CUBE ATTACK 

Zhang et al. in [5] proposed two different variations of the cube attack: the 

cube attack with annihilators and the cube attack on a vectorial Boolean function 

finding relations with low degree polynomials.  
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1. Cube Attack with Annihilators 

In cube attacks with annihilators the focus is on stream ciphers. Their 

method is a combination of the algebraic attack of Courtois and Meier [18], and 

the cube attack [5]. They adapt the main observation of Courtois and Meier about 

polynomials: for some polynomial f one may find a polynomial g of lower degree 

than f , such that h fg . 

Assume that there is a stream cipher and the output bit is  

 ( , )z f x v ,  (4.7) 

where x is the unknown variable and v  represents the known variable. Courtois’ 

concept may be applied in the cube attack and one ends up with the following 

relation [from 5]: 

 ( , ) ( , ) ( , )
v C v C

h x v f x v g x v
 

  ,  (4.8) 

where deg( )g k , deg( )f d  and k d . Then deg( )h l , where l d  and l k . 

In the basic steps of the cube attack with annihilators the attacker, initially uses 

known algorithms to find g and h . Then, in the preprocessing phase, the attacker 

computes the polynomial derived from the summation  

 ( , )
v C

h x v

 , (4.9) 

and in the online phase, he calculates through linearization the summation  

 ( , ) ( , ) ( , )
v C v C

f x v g x v h x v
 

  , (4.10) 

Zhang et al. implemented the above attack in a Toyocrypt cipher with re-

synchronization, breaking the cipher in a few milliseconds on an ordinary PC [5].  

2. Cube Attack on a Vectorial Filter Function with Low Degree 

In the cube attack on a vectorial filter function with low degree Zhang et al. 

in [5] combined the cube attack with annihilators with a low degree on vectorial 
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equations that are obtained from the computation of the rank of the matrices of 

some monomials.  

Assuming we have the following vectorial filter function: 

 ( , )z f x v ,  (4.11) 

where x  are unknown bits of size n ,v are known bits of size m  and z is a vector 

of multiple output bits. A function of ( , , )g x v z  is found where deg( , )x v k  such 

that ( , ) ( , , ( , ))h x v g x v f x v is of degree l , with deg( )k l f  . 

The attack phases are as follows [from 5]: 

Firstly, ,g h  must be found. Therefore we choose 
0

e n

k

 
 
 

  maxterms, where e is 

the vector where the k-th component is 1 and the rest are 0. For each maxterm 

the summation ( , )
C

h x v  is computed by finding the coefficient of every x-

monomial. 

Finally, in the online phase for each maxterm ( , , )
C

g x v z  is computed as a 

polynomial of x , since z is known.  

The cube attack with annihilators may be applied on single-bit output 

ciphers whereas the cube attack with a filter function may be applied on multi-

output stream ciphers. 
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V. BLUETOOTH KEY STREAM GENERATOR E0 

A. INTRODUCTION 

The Bluetooth encryption concept is described in Volume 2, Part C, 

Chapter 4.2 of the Bluetooth specification document [28]. Bluetooth is the name 

of a wireless communication protocol used for exchanging data from mobile and 

fixed devices (laptops, PCs, mobile phones, etc.) at low energy and short range, 

thus creating personal area networks (PANs).  Bluetooth communication ranges 

(transmitter/receiver) from 1 to 10 meters (approximately 33 feet), and high-

energy Bluetooth devices enable ranges up to 100 meters (approximately 328 

feet). Bluetooth provides authentication mechanisms and data encryption, 

ensuring confidentiality of the data using point-to-point or broadcast encryption. 

[28, p. 935] Bluetooth uses the stream cipher algorithm E0 for encryption, which 

is a combinatory generator with memory. For the rest of the thesis, the author will 

concentrate on analyzing the key generation process investigating the 

cryptographic strength of E0 under a cube attack. 

B. BLUETOOTH’S ENCRYPTION APPROACH 

Every time two Bluetooth devices want to communicate securely with each 

other, key exchange protocols are in use. Once both users agree on a shared 

secret, called link key, and authenticate themselves, this link key is used later to 

generate the encryption key ( )cK . Although Bluetooth uses algorithms E21 and 

E22, which are based on the block cipher Secure and Fast Encryption Routine 

(SAFER+), to authenticate its users and for key derivation, Bluetooth does not 

use these algorithms to encrypt information [28, p. 952]. The actual data of the 

packet are enciphered separately. The encryption algorithm E0 uses the 

originator’s Bluetooth device address, usually called the master device 

(BD_ADDR), twenty-six bits of the originator’s clock time and the encryption 

key CK .  
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CK  is the secret key that is produced by the current link key. A 96-bit 

encryption offset number called COF , known from the authentication 

procedure, and a 128-bit random number (EN_RAND) which is a public variable 

that is transmitted as plaintext, are needed in order to produce this encryption 

key  CK , as depicted in Figure 3. This process executes in the encryption 

algorithm E3.  

_EN RAND

COF

_Link Key
3E

cK
 

Figure 3.   Encryption Algorithm E3 (After [28, p. 953]) 

Inside E0, the secret key CK is modified into another key, namely 
'
CK . 

The 
'
CK  key is used along with the public variables, the originating device's 

media access control (MAC) address, and the clock value. The clock value 

changes on each packet (and acts as an “IV”), as is shown in Figure 4.  
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cipherK

0E
_ ABD ADDR

Aclock

cK

A Bdata 

B Adata 

cipherK

0E
_ ABD ADDR

Aclock

cK

A Bdata 

B Adata 

_ AEN RAND

data

 

Figure 4.   Functional Description of the Encryption Procedure (After [28 p. 937]) 

The encryption algorithm E0 generates a binary keystream, called CipherK , 

which is bitwise XORed with the plaintext. The cipher is symmetric and the 

decryption will be performed in a similar way, as the receiver generates the same 

keystream that is then bitwise XORed with the ciphertext to produce the plaintext.  

C. STREAM CIPHER E0 

Stream cipher E0 is a keystream combination generator with memory. It 

uses four LFSRs of total length 128 bits and a nonlinear combiner function with 

memory. A finite state machine, called a summation combiner, with sixteen 

states, combines the output of the LFSRs. The output of this state machine 

represents the key sequence, or during the initialization phase is the randomized 

initial start value. The algorithm uses the encryption key CK , a 48-bit address, 

the master clock bits 26 1CLK  , and a 128-bit random number [28, p. 937–938]. 

The setup of an E0 keystream generator is depicted in Figure 5. 
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2
 
 

1z

1z

1
tX

2
tX

3
tX

4
tX

tz

tc

0
tc

1tc 
1
tX
2
tX

3
tX

3
tX
4
tX

ty 1tS 

 

Figure 5.   Encryption Procedure (After [39]) 

The four linear feedback shift registers E0 (LFSR1, LFSR2, LFSR and 

LFSR4) of E0 have the following lengths: 

1 2 3 425, 31, 33, 39L L L L    . 

 

Their corresponding polynomials, which are all primitive, are shown in Table 5. 
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Table 4.   Primitive Feedback Polynomials of E0 (From [28, p. 938]) 

The Hamming weight of each primitive polynomial is five; therefore, the 

generated sequences have good statistical properties. On the other hand, they 

are easy to implement in hardware.  

The encryption process of E0 is described below. The LFSRs and the 

memory bits are initialized with the key, an address, a random number, and 

clocking bits. The clocking bits ensure that the system will not run numerous 

times with the same initialization and therefore disclose bits of the key. Let i
tx  

denote the output bit of iLFSR  at clock-time t. Then we generate the value ty  

from the 4th tuple 1 2 3 4, , ,t t t tx x x x  by:  

 

4

1

i
t t

i

y x


 , (5.1) 

The summation is over the integers, which means that ty  belongs to  0,1, 2,3, 4 . 

The output of the summation generator can be obtained as follows. 2 

The function 0f  is formed using the XOR operation and one can generate tz of 

the keystream:  
                                            

2  The glossary of E0 keystream generator can be found in Appendix D. 

 

Primitive Feedback Polynomials of E0 

i  
iL  Primitive Feedback Polynomials ( )if x  Hamming Weight 

LFSR1 25 25 20 12 8 1x x x x     5 

LFSR2 31 31 24 16 12 1x x x x     5 

LFSR3 33 33 28 24 4 1x x x x     5 

LFSR4 39 39 36 28 4 1x x x x     5 
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0 1 2 3 4 0

0 ( , )t t t t t t t tz f x c x x x x c      ,  0,1tz   (5.2) 

 

The nonlinearity of E0 comes from the function 1f , whose output is a two-bit 

sequence ts . 

 
 1 0

1 1 1 1( , ) ( , ) 0,1,2,3
2

t t
t t t t t

y c
s s s f x c  

      
 (5.3) 

The " " symbol in Equation (5.3) is the usual integer sum. The memory update 

function is a composition of 1f and T  and is linear with the following form: 

 
1 0

1 1 1 1 1 1 1 2 1( , ) ( , , ) [ ] [ ]t t t t t t t t tc c c T s c c s T c T c           , (5.4) 

where 1[.]T  and 2[.]T are two different linear bijections over GF(4), summarized in 

Table 6 [28, p. 939]. 

Table 5.   Mappings of 1T   and 2T   

The E0 algorithm must be initialized with a value from the four LFSRs (128 

bits in total) and the four bits that specify the values of 0 1,c c . The 132-bit initial 

value is derived from four inputs using the key stream generator. The input 

parameters are cK , a 128-bit random number RAND, a 48-bit Bluetooth device 

address, and the twenty-six originator’s device clock bits 26 1CLK  [28, p. 940]. 

E0 Linear Bijections Mapping to Binary Vectors 

0 1x x  1[ ]T x  2[ ]T x  

00 00 00 

01 01 11 

10 10 01 

11 11 10 

 

1 1 0 1 0: ( , ) ( , )T x x x x  

2 1 0 0 1 0: ( , ) ( , )T x x x x x  

 

 



 45

D. MODELING ENCRYPTION FUNCTION OF E0 

During the author’s investigation of the encryption function of the E0 

algorithm, he adopted Armknecht and Krause’s approach in order to find a 

function that is not dependent on memory bits and holds for every clock tick. [22] 

Let tz be the keystream bit produced by E0 at clock t , 1tz   be the 

keystream bit produced by E0 at clock 1t  , etc. These bits are randomly 

generated. At every clock value, the output of E0 is the bit tz , which is dependent 

on the output bits of four LFSRs  41 2 3 4( , , , ) 0,1t t t t tx x x x x   and the four memory 

bits  4
0,1tc  . 

In more detail, the components of 1 0( , )t t tc c c are as follows: 

 

1 1 1 0
1 2t t t tc s c c     , (5.5) 

 
0 0 0 1 0

1 2 2t t t t tc s c c c      , (5.6) 

The goal of the cryptanalysis is to come up with an equation that describes the 

encryption of the E0 keystream generator consisting only of the bits of the LFSRs 

and key stream bits tz , while eliminating the memory bits tc .  The reason is that 

the author does not want to use a polynomial of degree n  where the system of 

equations would be unsolvable [23, p. 5]. 

The encryption function G  for E0 becomes 

 1 2 3( ( ), , , , ) 0t
t t t tG L K z z z z     , where 1, 2 16( ) ( ,..., )tL K x x x  (5.7) 
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More specifically, 

2 4
1 2 3 1 1 2 3 1( )t t t t t t t t t tz z z z z z z z                 
1

1 2 3 1 1 2 1 3( )t t t t t t t t t tz z z z z z z z z               
1 1 1 1 2

1 1 1(1 )t t t t t tz         1 1 1
2 2 2 1 2 1( 1)t t t t t tz z z           

1 2
2 1 2t t tz     2 2 1 2 2

2 2 1 1 2 1(1 )t t t t t tz             
1 1 1 1 2

3 3 1 1 3 1(1 )t t t t t tz           
 

 

3 2 1
1 1 1 1 0t t t tz       , (5.8) 

where i
t  denotes the i-th elementary symmetric polynomial in i

tx . 

1
1 2 3 4

2
1 2 1 3 1 4 2 3 2 4 3 4

3
1 2 3 1 2 4 1 3 4 2 3 4

4
1 2 3 4

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x

    

      

    

    (5.9)

 

1
1 5 6 7 8

2
1 5 6 5 7 5 8 6 7 6 8 7 8

3
1 5 6 7 5 6 8 5 7 8 6 7 8

4
1 5 6 7 8

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x









    

      

    

   (5.10)

 

1
2 9 10 11 12

2
2 9 10 9 11 9 12 10 11 10 12 11 12

3
2 9 10 11 9 10 12 9 11 12 10 11 12

4
2 9 10 11 12

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x









    

      

    

   (5.11) 

1
3 13 14 15 16

2
3 13 14 13 15 13 16 14 15 14 16 15 16

3
3 13 14 15 13 14 16 13 15 16 14 15 16

4
3 13 14 15 16

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x









    

      

    

   (5.12)
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and the output bit streams for clock times t, t+1, t+2, t+3 are as follows:         

 

1

2

3

t

t

t

t

z a

z b

z c

z d










  (5.13)

 

Theorem 5.1: The encryption function of E0 depends only on the output 

bits of the four LFSRs and the output keystream bit and holds for every clock tick. 

Four consecutive clock ticks are needed.   

Proof [from [22]]: 

The key stream generator E0 consists of four LFSRs and four memory 

bits. For every clock time t  an output tz  is produced based on the outputs 

1 2 3 4( , , , )t t t t tx x x x x of the four LFSRs and the four memory bits 1 1( , , , )t t t t tc q p q p  . 

The next memory bits at clock time 1t   are 1 1 1( , , , )t t t t tc q p q p   . The memory 

bits ,t tq p  appear in both clock times of t  and 1t  . The variable i
t  denotes the i-

th elementary symmetric polynomial over 1 2 3 4( , , , )t t t t tx x x x x , which is the sum of 

all monomials of length 4s  . 

Thus, 

 
1

t t tz p   , (5.14) 

 1 1 1( , , , )t t t t tc q p q p    (5.15) 

However, at the same time 

 
1 0

1 1 1 1 1( , , , )t t
t t t t t t tc s q p s q p q p         , (5.16) 

 

1 2 3 4
1 0

1 1 1

2
( , )

2
t t t t t t

t t t

x x x x q p
s s s  

     
   

 
, (5.17) 
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The contents of the LFSRs and the value of 1c  are set at the beginning. All the 

other values may be calculated from these. 

From Equations (5.15) and (5.16), the following is obtained: 

 
1 0

1 1 1 1 1 1 1( , , , ) ( , , , )t t
t t t t t t t t t t tc q p q p s q p s q p q p             (5.18) 

Assume 0f and 1f are two Boolean functions derived from Equations (5.3) and 

(5.4) such that: 

 

1 2 3 4
1 ( , , , , , )i t t

t i t t t ts f x x x x q p  , where  0,1i  (5.19) 

 

Armknecht [22, p. 173–174] proved that the algebraic normal forms of 0f and 1f  

have the expressions:  

 2 1
0

t t
t tf p q    , (5.20) 

 4 3 2 1
1

t t t t
t t t tf p q p q     . (5.21) 

Based on Equation (5.18) we obtain 

 0 2 1
1 1 1 1 1 1t t t t t t t t t t t tp s p q p p q q p p                , (5.22) 

 1 4 3 2 1
1 1 1 1t t t t t t t t t t t t t tq s q p p q p q q p             , (5.23) 

The values of 1tp   and 1tq   depend on 1 1, , , ,t t t t tx q q p p   and 1, , ,t t t tx q p p  , 

respectively. 

Equations (5.22) and (5.23) are simplified by using the following equations: 

 4 3
1( ) t t t tt p p      , (5.24) 

 2 1( ) 1t t tt p    . (5.25) 

Therefore, Equations (5.22) and (5.23) become 

 1 1 1( ) 1t t t tp t p p q        , (5.26) 
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 1 ( ) ( )t tq t t q    , (5.27) 

From Equation (5.27), the following is obtained: 

 1( ) ( )( ( ) ( ) )t tt q t t t q      or 

 1( )( ( ) ) 0t tt t q q      , since ( ) ( ) ( )t t t    .  (5.28) 

 

Equation (5.26) is then transformed into the following:  

 1 1 1( ) 1t t t t tq q t p p p         . (5.29) 

Replacing t  by 1t   in Equation 5.28 and applying Equation 5.29, we have:  

 1 2( )( ( ) ( 1) 1 ) 0t t tt t t p p p          . (5.30) 

Applying Equation (5.14) we are now able to derive Equation (5.8) which holds 

for every clock t and does not have any memory bits in the equation. 

2 4
1 2 3 1 1 2 3 1( )t t t t t t t t t tz z z z z z z z               

1
1 2 3 1 1 2 1 3( )t t t t t t t t t tz z z z z z z z z             

1 1 1 1 2
1 1 1(1 )t t t t t tz         1 1 1

2 2 2 1 2 1( 1)t t t t t tz z z         
1 2

2 1 2t t tz     2 2 1 2 2
2 2 1 1 2 1(1 )t t t t t tz           

1 1 1 1 2
3 3 1 1 3 1(1 )t t t t t tz           

 
3 2 1

1 1 1 1 0,t t t tz      
 

and in a more generic form:  

1 2 16 1 2 3( , ,... , , , , ) 0t t t tG x x x z z z z     

■ 

Equation (5.8), of degree 4 with twenty variables, can be fully described by the 

following expression: 
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5 6 5 7 5 8 6 7 6 8 7 8 5 6 7 8

5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 5 7 5 8 6 7 6 8 7 8

9 10 11 12 9

0

( )( )

( )( )

( )( )(1 )

( )( )

( ) (

a b c d

x x x x x x x x x x x x a b c d x x x x

x x x x a c d ab bc bd x x x x

x x x x x x x x b

x x x x x x x x x x x x x x x x

x x x x b x

    
         

            
       
        
    10 11 12 5 6 7 8

9 10 11 12 5 6 5 7 5 8 6 7 6 8 7 8

9 10 9 11 9 12 10 11 10 12 11 12

9 10 9 11 9 12 10 11 10 12 11 12 5 6 7 8

9 10 9 11 9 12

)( ) ( 1)

( )( )

( )

( )( )(1 )

(

x x x x x x x c b

x x x x x x x x x x x x x x x x c

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x b

x x x x x x

       
        
     
         
  10 11 10 12 11 12 5 6 5 7 5 8 6 7 6 8 7 8

13 14 15 16 13 14 15 16 5 6 7 8

13 14 15 16 5 6 5 7 5 8 6 7 6 8 7 8

5 6 7 5 6 8 5 7 8 6 7 8 5 6 5 7 5

)( )

( )( )( 1)

( )( )

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x b

x x x x x x x x x x x x x x x x

x x x b x x x b x x x b x x x b x x x x x x

        
           
        

      8 6 7 6 8 7 8

5 6 7 8.

x x x x x x

x x x x

   
  

 (5.31) 

The full expansion of the encryption function of can be found in Appendix A. 
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VI. AUTOMATED TOOL FOR MODELING CUBE ATTACK  

No matter how correct a mathematical theorem may appear to be, 
one ought never to be satisfied that there was not something 
imperfect about it until it also gives the impression of being 
beautiful. 

George Boole (1815–1864) 

A. OVERVIEW 

In this chapter, the author implemented Dinur and Shamir’s cube attack on 

a Bluetooth E0 keystream generator. In order to do that, he modeled the E0 

encryption function of Bluetooth in Chapter V. He then created an automated tool 

in the Maple 12 environment (http://www.maplesoft.com) that finds all of the 

maxterms and their corresponding superpolys (linear coefficients) of the 

encryption function. Then, in the online phase, he used a chosen plaintext attack 

in order to solve the system of linear equations he found. Eventually, he 

evaluated the results and investigated the complexity of the process. 

B. APPROACH—BASIC ASSUMPTIONS  

The most time-consuming work in the computation process, namely 

finding the maxterms and their corresponding superpolys, was executed in the 

Maple 12 environment. Maple is a high-level programming language with 

powerful built-in symbolic algebra, numerical and graphical capabilities. The 

reasons why the author chose Maple 12 instead of any other programming 

language like C, C++, Java, or symbolic Python were mainly that he wanted to 

benefit from the advantages of a high-performance mathematical engine with 

fully integrated numerals and symbols, especially in algebra. With this in mind, 

under the guidance of an expert programmer in the Maple environment, Dr. 

David Canright, Associate Professor of the Department of Applied Mathematics 

of the Naval Postgraduate School’ the author created effective code in a compact 

and optimal way.  
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1. Modeling Environment 

Maple uses a C-like programming language. It has many of the features 

that other high-level programming languages have, like loops, conditionals, and 

functions. Maple does not support classes of objects; however, this feature is 

overcome by a rich set of packages available for Maple. Maple can generate 

code in other high-level programming languages like C, Java, Fortran, Visual 

Basic and Matlab using the CodeGeneration package. The OpenWatcom C 

compiler is used for the Maple compiler. This allows the user to compile some 

types of user-written Maple routines to increase code performance. 

Maple 12 works on Windows (2000, 2003, XP, Vista), Macintosh, UNIX, 

Linux and Solaris environments. Developers’ system recommendations include 

the following [29]: 

 CPU: AMD X86_64/ 1 GHz/Intel Xeon/ Intel 64 

 RAM: 512MB (at least) 

 Hard disk: 1 GB 

The computational interfaces Maple 12 has available for its users include 

the standard worksheet, which is the environment that the author worked in. The 

standard worksheet is a full-feature graphical user interface that enables users to 

create documents, and it displays all the calculations and possible errors in the 

results. The standard interface is written primarily in Java to speed up the 

computational process and provide portability. The standard worksheet has two 

modes: the document mode and the worksheet mode. The main difference 

between these two modes is that in the first interface the user hides all 

commands used to perform calculations whereas in the latter interface the user 

shows all commands. Maple 12 also has other user interfaces such as the 

classic worksheet, which is a basic worksheet environment for computers with 

limited memory; and the command line interface, in which a user may solve large 

and complex problems without thorough graphical user interface features 

available. 
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The Maplesoft graphing calculator provides another Maple 12 interface 

and is available for computers using the Microsoft Windows Operating System 

only. This graphical user interface contains windows, textbox regions and other 

visual interfaces that give the user a point–and-click interface to access the 

computation processor of Maple without using the worksheet. Finally, Maple 

provides the Mapletapplication. It has a graphical calculator interface that the 

user can use to perform simple computations and create customizable graphs in 

a windows environment only [30]. 

2. Basic Assumptions 

In part, the cube attack is a chosen plaintext attack: the part that can be 

manipulated by the attacker. To implement the cube attack, we assume the 

attacker has the capability to properly send structured packets that the Bluetooth 

receiver will respond to, thus providing the attacker with access to the encryption 

machine. This machine behaves like an oracle. If the attacker convinces the 

oracle it is a legitimate participant, it will be duped into sending data to the 

attacker or another participant; however, the attacker can observe “over the air” 

whatever responses the oracle or the user sends back. 

For example, the attacker can masquerade as a real user, with sufficient 

detail to send data to the oracle. The oracle will return encrypted data to the 

attacker or an authorized user/participant in the communication process, and the 

attacker will collect this data. The attacker thus gains some knowledge of the 

output bitstreams for the combiner at clock ticks t, t1, t2, and t3.  

The following theorem derived from our investigation:  

Theorem 6.1:The maxterms of E0 encryption function can only be of 2nd 

or 3rd degree.    

Proof: 

Assume that a maxterm could be of degree 4. By Definition 4.3 of the term 

called maxterm, in order for a maxterm to exist there must be terms in the E0 
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encryption function of the 5th degree. Since the encryption function being used in 

this study (Appendix A) is of degree 4, it cannot have a maxterm of degree 4.  

Assume that a maxterm could be of degree 1. Then, by the definition of 

maxterm, since the cofactor must be linear and not constant, one must check all 

the 2nd degree terms of the encryption function E0 in Equation (5.31). Thus, one 

may observe there, that the only terms of the 2nd degree derive from the following 

products: 

2
1 1 2 3( )t t t t tz z z z       , 1 1

1 1(1 )t t tz    , 1 1
2 1 2 1( 1)t t t tz z      , 2

2t , 1 1
3 1 1(1 )t t tz      

and 2
1t . 

Each term of the 2nd degree is examined as follows: 

2
1 1 2 3

5 7 5 7 5 7 5 7 5 8 5 8 5 8 5 8

6 7 6 7 6 7 6 7 6 8 6 8 6 8 6 8

7 8 7 8 7 8 7 8

( )

,

t t t t tz z z z

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d

       

       
       

  

 (6.1) 

1 1
1 1

1 5 1 6 1 7 1 8 2 5 2 6 2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

1 5 1 6 1 7 1 8 2 5 2 6 2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

(1 )

,

t t tz

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x b x x b x x b x x b x x b x x b x x b x x b

x x b x x b x x b x x b x x b x x b x x b x x b

    
       
       
       

      

 (6.2) 

1 1
2 1 2 1

9 5 9 6 9 7 9 8 10 5

10 6 10 7 10 8 11 5 11 6

11 7 11 8 12 5 12 6 12 7

12 8 9 5 9 6 9 7 9 8 10 5

10 6 10 7 10 8

( 1)t t t tz z

x x cb x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x cb

x x cb x x c x x c x x c x x c x x c

x x c x x c x x c x

      
    
    
    
     
   11 5 11 6 11 7

11 8 12 5 12 6 12 7 12 8 ,

x c x x c x x c

x x c x x c x x c x x c x x c

  
   

 (6.3) 

2
2 9 10 9 11 9 12 10 11 10 12 11 12 ,t x x x x x x x x x x x x        (6.4) 



 55

1 1
3 1 1

13 5 13 6 13 7 13 8 14 5

14 6 14 7 14 8 15 5 15 6

15 7 15 8 16 5 16 6 16 7

16 8 13 5 13 6 13 7 13 8

14 5 14 6 14 7 14 8 15 5

15 6 15 7 15 8

(1 )t t tz

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

x x x x b x x b x x b x x b

x x b x x b x x b x x b x x b

x x b x x b x x b x

     
    
    
    
    
    

   16 5 16 6

16 7 16 8 ,

x b x x b

x x b x x b

 


 (6.5) 

2
1 5 6 5 7 5 8 6 7 6 8 7 8.t x x x x x x x x x x x x        (6.6) 

Notice that a,b,c, and d are assumed known bits (0 ,1) because we assume that 

the attacker can intercept them; therefore, their appearance as terms in the 

equation does not increase the degree of the equation since they behave as 

constants. 

In the next steps, the author investigates the unknown variables 1 12,...,x x  that 

appear in Equations (6.1) through (6.6).  

We note that if there is factoring by 1x  (though of as a maxterm) in 

Equations (6.1) and (6.2) where 1x  appears, then one gets 

1 5 6 7 8 5 6 7 8( )x x x x x x b x b x b x b       . However, looking in the Equation 

(5.31), 1x  appears also in the product: 

1 2
1 1 2 3 4 5 6 5 7 5 8 6 7 6 8 7 8( )( )t t x x x x x x x x x x x x x x x x           . 

That means that the superpoly is not going to be linear but of 2nd degree and 

based on Definition 4.3, 1x  fails to be a maxterm.  

Similarly, the appearance of the product, 1 2
1t t   in Equation (5.31), makes 

the variables 2 3 4 5 6 7 8, , , , , ,x x x x x x x  fail to be maxterms for the same reason.3 

                                            
3 Note that variables 5 6 7 8, , ,x x x x  fail at being maxterms because 4

1 5 6 7 8t x x x x   appears 
in Equation (5.31). 



 56

If one factors 9x  from Equations (6.3) and (6.4), one gets the following 

product: 9 5 6 7 8 10 11 12( )x x cb x cb x cb x cb x x x      , where 9x  fulfills Definition 

4.3. However, looking at Equation (5.31) 9x  also appears in the product: 

2 2
2 1

9 10 9 11 9 12 10 11 10 12 11 12 5 6 5 7 5 8 6 7 6 8 7 8

9 10 5 6 9 10 5 7 9 10 5 8 9 10 6 7 9 10 6 8 9 10 7 8

9 11 5 6 9 11 5 7 9 11 5 8 9 11 6 7 9 11 6 8 9 11 7

( )( )
t t

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x

   
          

     
     8

9 12 5 6 9 12 5 7 9 12 5 8 9 12 6 7 9 12 6 8 9 12 7 8

10 11 5 6 10 11 5 7 10 11 5 8 10 11 6 7 10 11 6 8 10 11 7 8

10 12 5 6 10 12 5 7 10 12 5 8 10 12 6 7 10 12 6 8 10 12 7 8

11 1

x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x


     
     

     

2 5 6 11 12 5 7 11 12 5 8 11 12 6 7 11 12 6 8 11 12 7 8.x x x x x x x x x x x x x x x x x x x x x x    

 

That means that the superpoly is not going to be linear, but of 2nd degree, and 

again by the Definition 4.3, 9x  fails at being a maxterm. The appearance of the 

same product 2 2
2 1t t    in Equation (5.31), makes variables 10 11 12, ,x x x  fail at being 

maxterms for the same reasons 9x  did.4 

The results detailed in Table 7 of section C of this chapter illustrate that 

the maxterms of 2nd and 3rd degree do exist. 

C.  RESULTS 

1. Preprocessing Phase 

In Table 7, the author has displayed all the maxterms and their 

corresponding linear coefficients or superpolys of the encryption function found 

by running the program in the Maple environment.  

 

 

 

                                            
4 Note that variables 9 10 11 12, , ,x x x x  fail at being maxterms because 2 1 1 2

2 1 2 1, ,t t t t        
appear in Equation (5.31). 



 57

Superpolys 
(with Linear 
Coefficients) 

Cube Indexes of 
Maxterms of the 2nd 

Degree 

Cube Indexes of Maxterms of 
the 3rd Degree 

6 7 8 1x x x b     {1,5}, {2,5}, {3,5}, {4,5} 
{5,13}, {5,14}, {5,15}, 

{5,16} 
 

{5,9,10}, {5,9,11}, {5,9,12}, 
{5,10,11}, {5,10,12}, 

{5,11,12} 

5 7 8 1x x x b     {1,6}, {2,6}, {3,6}, {4,6}, 
{6,13}, {6,14}, {6,15}, 

{6,16} 

{6,9,10}, {6,9,11}, {6,9,12}, 
{6,10,11}, {6,10,12}, {6,11,12} 

5 6 8 1x x x b     {1,7}, {2,7}, {3,7}, {4,7}, 
{7,13},{7,14},{7,15}, 

{7,16} 

{7,9,10}, {7,9,11}, {7,9,12}, 
{7,10,11}, {7,10,12}, {7,11,12} 

5 6 7 1x x x b     {1,8}, {2,8}, {3,8}, {4,8}, 
{8,13}, {8,14}, {8,15}, 

{8,16} 

{8,9,10}, {8,9,11}, {8,9,12}, 
{8,10,11},  {8,10,12}, {8,11,12} 

9 10 11x x x c    - {5,6,12}, {5,7,12}, {5,8,12}, 
{6,7,12}, {6,8,12}, {7,8,12} 

9 10 12x x x c    - {5,6,11}, {5,7,11}, {5,8,11}, 
{6,7,11}, {6,8,11}, {7,8,11} 

9 11 12x x x c    - {5,6,10}, {5,7,10}, {5,8,10}, 
{6,7,10}, {6,8,10}, {7,8,10} 

10 11 12x x x c    - {5,6,9}, {5,7,9}, {5,8,9}, {6,7,9}, 
{6,8,9}, {7,8,9} 

5x b  - {6,7,8} 

6x b  - {5,7,8} 

7x b  - {5,6,8} 

8x b  - {5,6,7} 

 

Table 6.   Maxterms and Superpolys of the E0 Keystream Generator 

 

The author ended up with twelve superpolys/linear coefficients, depending 

on the following unknown variables: 5 6 7 8 9 10 11 12, , , , , , ,x x x x x x x x .  

Observation 6.2: The author was forced to use variables 

5 6 7 8 9 10 11 12, , , , , , ,x x x x x x x x  as unknowns since they are the only variables that 

appear as variables in the superpolys. By implementing a chosen plaintext 

attack, the attacker can determine their values. 
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This is a useful observation, and in addition, the terms that appear in the 2nd and 

3rd columns of the table do not have to be assumed known, but rather only need 

to be manipulatable. 

The program was executed several times, for testing purposes, on an Intel 

Pentium 4 processor with a CPU of 2.80 GHz and 1GB of RAM, and the results 

were produced in a mean time of 8.03 seconds, consuming 5.25 MB of memory.  

2. Online Phase 

Using the encryption function formed by the multivariable polynomial 

(Appendix A) after the processing phase, the attacker obtained all the possible 

linear co-factors (superpolys). From the specific encryption function of the 

multivariable polynomial (obtained after the attacker masquerades as an 

authorized user and gains access to the security protocol) the attacker will 

eventually succeed in gathering twelve unique and independent equations: 

 

 5 1x b a  , (6.1) 

 6 2x b a  , (6.2) 

 7 3x b a  , (6.3) 

 8 4x b a  , (6.4) 

 6 7 8 51x x x b a     , (6.5) 

 5 7 8 61x x x b a     , (6.6) 

 5 6 8 71x x x b a     , (6.7) 

 5 6 7 81x x x b a     , (6.8) 

 9 10 11 9x x x c a    , (6.9) 

 9 10 12 10x x x c a    , (6.10) 

 9 11 12 11x x x c a    , (6.11) 

 10 11 12 12x x x c a    , (6.12) 
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where {0,1}ia   and {1,...,12}i are considered known bits. 

The above system of equations is an over-defined system of equations on 

variables 5 6 7 8, , ,x x x x . Τhe solution we obtained is: 

 5 1x a b  , (6.13) 

 6 2x a b  , (6.14) 

 7 3x a b  , (6.15) 

 8 4x a b  , (6.16) 

 9 9 10 11x a a a   , (6.17) 

 10 9 10 12x a a a   , (6.18) 

 11 9 11 12x a a a c    , (6.17) 

 12 10 11 12x a a a c    , (6.18) 

Remark. It is worth mentioning that even if not all these assumptions are 

made, it is still possible to use this approach to find useful information about the 

output bits of the LFSRs.  

D. ANALYSIS OF THE RESULTS 

Below is our main contribution in this thesis. 

Theorem 6.3: If an attacker has unauthorized access to the encryption 

protocol and can use the encryption machine as an oracle so that he can 

manipulate some of the bits of the LFSRs, and by knowing the output bits of the 

E0 keystream generator he succeeds in recovering  the outputs of the LFSRs at 

any clock tick. 

Proof: 

In section C of this chapter we proved that assuming that an attacker has 

access to the variables of the four LFSRs at clock time t, t+1, t+2 and t+3 and the 

output bit streams of E0 he can compute the output of the four LFSRs at clocks 

ticks t+1 and t+2. 
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By continuing this process in reverse order, it is easy to observe that one can 

compute the output of the four LFSRs at clock ticks t and t+1, by only having 

access and tweaking the variables and the output of E0 at clock tick t-1.  

Taking a step back in time at another one clock, an attacker may explicitly find 

that for the output of the LFSRs at clocks t, t-1 he only has to have further access 

and tweak the variables and the output bits of E0 at clock t-2, and so on. 

The theorem is proved.                ■ 

Further knowledge about the insight of E0 is needed to correlate the 

output of the LFSRs and the encryption key placed in E0. A difficulty one may 

have in completely revealing the encryption key is that in accordance with Lu and 

Vaudenay in [1], the E0 keystream generator produces limited segments of 

keystream and after 2745 bits, the generator is reinitialized. However, this is not 

explicitly stated in the Bluetooth core specifications document. 

E. COMPLEXITY 

The complexity in this section is measured in operations steps. 

1. Preprocessing Phase 

Let d be the degree of the encryption function f and n be the number of 

variables of f. During the preprocessing phase, an attacker is trying to find as 

many maxterms as possible. From this phase, an attacker may obtain n+1 output 

bits from the LFSRs and some constant terms. The amount of work needed, 

based on Zhang et al. in [5], is  

1( 1)2dn n   

The attacker also needs to compute the inverse of the matrix of linear relations 

matrix. This requires approximately 3n  operations and as a result, an upper bound 

from this phase is: 

1 3( 1)2dn n n   
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2. Online Phase 

For the online phase, where one needs to solve the system of linear 

equations implementing a chosen plaintext attack, 12dn  evaluations of the E0 

encryption function are needed, and the matrix multiplication which takes 

2n operations needs to be performed. Again, by drawing on the analysis by 

Zhang et al. [5], the complexity is of the following form: 

1 22dn n   

 

Therefore, the overall complexity from both phases is: 

 

 

1 3 1 2

2 1 1 3 2

( 1)2 2

2 2 2

d d

d d

n n n n n

n n n n

 

 

    

    (6.19) 

which is equivalent to 2 1 3( 2 )dO n n  . 

In the case of Bluetooth, with 1 2 3 4 128n n n n n      (where 1n  is the length of 

the first LFSR, 2n is the length of the second LFSR, and so on) and d=4, we 

determine that the attack on E0 requires 21.12246656 2  bit operations. 

The number of operations needed for the computational process is considerable 

less than of similar algebraic attack ( 54.512 bit operations needed [3]) and 

correlation attack ( 372 bit operations needed [2]) types, which we described in 

Chapter III. However, our cube-type attack is limited to the LFSRs’ output at any 

clock tick.  
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VII. CONCLUSION  

We can only see a short distance ahead, but we can see plenty 
there that needs to be done. 

Alan Turing (1912–1954) 

A. CONTRIBUTION 

The main contribution of this thesis is as follows:  

If an attacker has unauthorized access to the encryption protocol, the 

attacker can use the encryption machine as an oracle so that he can manipulate 

some of the bits of the LFSRs, and knows the output bits of the E0 keystream 

generator, he can find the outputs of the individual LFSRs at any clock tick. 

In this study, we investigated the current types of attacks, like correlation 

and algebraic attacks, used in wireless systems. He focused on a new 

(introduced in 2008) and promising type of algebraic attack, namely the cube 

attack. We implemented the cube attack in a wireless system, namely Bluetooth. 

We modeled the encryption function of E0 and automated the process of the 

cube attack on E0. This included the factorization process (preprocessing phase) 

where an attacker finds as many maxterms as possible. In the actual attacking 

phase, the attacker solves the system of linear equations through a chosen 

plaintext attack and computes useful information about the cryptosystem. The 

number of operations needed for the computational process is of order 21.12 bit 

operations and is considerably less than that of similar algebraic types of attacks, 

but is limited in finding the output of the LFSRs at any clock cycle.  

A useful observation is the following. We have all these different types of 

attackers. Regardless of whether the attacker is a blackhat or greyhat or a 

whitehat hacker, a sufficient level of sophistication is required for the attacker to 

succeed on the implementation of the cube-type attack. A mixture of man-in-the-

middle attack and a chosen plaintext attack, knowledge of the encryption function 
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of the target machine, and knowledge of the encryption protocol that is in use, 

comes to take place, thus increasing the difficulty of the attack. 

B. FUTURE DIRECTIONS 

Further studies may improve many aspects of this thesis. The most 

important question that needs to be answered is to determine how an attacker 

can recover the encryption key of E0 after learning the output bits of every LFSR 

that this study provides. Further investigation of the structure of E0 given in [28] 

is required to correlate the internal, initial state of the LFSRs, like the pure key, 

corresponding address, random number and the clocking bits that feed into the 

LFSRs during their initialization phase, and the output bits per clock tick.  

Building on these results, the next stage of research is to validate our 

integration of the cube-type attack into the Bluetooth encryption protocol. As 

demonstrated in this research as well as other research, one needs to be able to 

understand and formally evaluate the strengths of a given cryptosystem and be 

able to evaluate the implementation of the cryptosystem to ensure that there are 

no flaws in the application of the cryptosystem. The cryptosystem and the 

protocol it uses may be good, but if poorly implemented they will most likely be 

untrustworthy.  

Given the ubiquity of Wi-Fi and emerging adoption of Wi-Max, it is evident 

that more work needs to be done to understand the trustworthiness of wireless 

systems in terms of the strength of the underlying encryption protocols. These 

systems use different encryption algorithms and different ciphers than E0. One 

could follow our steps to implement the cube-type attack, like modeling the 

encryption function of these systems, and then execute the preprocessing phase 

and online phase and observe how effective this attack may be. 
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APPENDIX A.  ENCRYPTION FUNCTION OF E0 IN FULL 
EXPANSION 

From Equation (5.31), after doing the algebraic multiplication and addition, we 

end up with the detailed encryption function. We did not use any tool to gain the 

result, since the polynomial was not of high degree and the number of variables 

was manageable.

  

5 6 5 6 5 6 5 6

5 7 5 7 5 7 5 7 5 8 5 8 5 8 5 8

6 7 6 7 6 7 6 7 6 8 6 8 6 8 6 8

7 8 7 8 7 8 7 8 5 6 7 8 5 5 5 5 5 5

6 6 6

0 a b c d x x a x x b x x c x x d

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d x x x x x a x c x d x ab x bc x bd

x a x c x

        

       

       
          

  6 6 6 7 7 7 7 7 7

8 8 8 8 8 8 1 2 3 4

1 5 1 6 1 7 1 8 2 5 2 6 2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

1 5 1 6 1 7 1 8 2 5 2 6

d x ab x bc x bd x a x c x d x ab x bc x bd

x a x c x d x ab x bc x bd x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x b x x b x x b x x b x x b x x b x

         

         

       
       

      2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

1 5 6 1 5 7 1 5 8 1 6 7 1 7 8 2 5 6 2 5 7 2 5 8 2 6 7 2 7 8

3 5 6 3 5 7 3 5 8 3 6 7 3 7 8 4 5 6 4 5 7 4 5 8 4 6 7 4 7 8

x b x x b

x x b x x b x x b x x b x x b x x b x x b x x b

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x

 

       

         
         

9 10 11 12 9 5 9 6 9 7 9 8

10 5 10 6 10 7 10 8 11 5 11 6 11 7 11 8

12 5 12 6 12 7 12 8 9 5 9 6 9 7 9 8

10 5 10 6 10 7 10 8 11 5

b x b x b x b x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x c x x c x x c x x c

x x c x x c x x c x x c x x c

       

       

       
    11 6 11 7 11 8 12 5 12 6 12 7 12 8

9 5 6 9 5 7 9 5 8 9 6 7 9 6 8 9 7 8

10 5 6 10 5 7 10 5 8 10 6 7 10 6 8 10 7 8

11 5 6 11 5 7 11 5 8 11 6 7 11 6 8 11

x x c x x c x x c x x c x x c x x c x x c

x x x c x x x c x x x c x x x c x x x c x x x c

x x x c x x x c x x x c x x x c x x x c x x x c

x x x c x x x c x x x c x x x c x x x c x

       

     

     

     7 8

12 5 6 12 5 7 12 5 8 12 6 7 12 6 8 12 7 8

9 10 9 11 9 12 10 11 10 12 11 12

9 10 5 9 10 6 9 10 7 9 10 8 9 11 5 9 11 6 9 11 7 9 11 8

9 12 5 9 12 6 9 12 7 9 12 8 10 1

x x c

x x x c x x x c x x x c x x x c x x x c x x x c

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x


     

     

       
    1 5 10 11 6 10 11 7 10 11 8x x x x x x x x x x   
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10 12 5 10 12 6 10 12 7 10 12 8 11 12 5 11 12 6 11 12 7 11 12 8

9 10 5 9 10 6 9 10 7 9 10 8 9 11 5 9 11 6 9 11 7 9 11 8

9 12 5 9 12 6 9 12 7 9 12 8 10 11 5 10 11 6

x x x x x x x x x x x x x x x x x x x x x x x x

x x x b x x x b x x x b x x x b x x x b x x x b x x x b x x x b

x x x b x x x b x x x b x x x b x x x b x x x b

       

       
      10 11 7 10 11 8

10 12 5 10 12 6 10 12 7 10 12 8 11 12 5 11 12 6 11 12 7 11 12 8

9 10 5 6 9 10 5 7 9 10 5 8 9 10 6 7 9 10 6 8 9 10 7 8

9 11 5 6 9 11 5 7 9 11 5 8 9 11 6 7

(

x x x b x x x b

x x x b x x x b x x x b x x x b x x x b x x x b x x x b x x x b

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

 

       

     

   9 11 6 8 9 11 7 8

9 12 5 6 9 12 5 7 9 12 5 8 9 12 6 7 9 12 6 8 9 12 7 8

10 11 5 6 10 11 5 7 10 11 5 8 10 11 6 7 10 11 6 8 10 11 7 8

10 12 5 6 10 12 5 7 10 12 5 8 10 12 6 7 10 12 6

x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

  

     

     

    8 10 12 7 8

11 12 5 6 11 12 5 7 11 12 5 8 11 12 6 7 11 12 6 8 11 12 7 8

13 14 15 16 13 5 13 6 13 7 13 8 14 5 14 6 14 7 14 8

15 5 15 6 15 7 15 8 16 5 16 6 16 7 16 8 13 5

)

x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x b x

 

     

           

         13 6

13 7 13 8 14 5 14 6 14 7 14 8 15 5 15 6 15 7 15 8

16 5 16 6 16 7 16 8 13 5 6 13 5 7 13 5 8 13 6 7 13 6 8 13 7 8

14 5 6 14 5 7 14 5 8 14 6 7 14 6 8 14 7 8

x b

x x b x x b x x b x x b x x b x x b x x b x x b x x b x x b

x x b x x b x x b x x b x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x



         

         

     

15 5 6 15 5 7 15 5 8 15 6 7 15 6 8 15 7 8

16 5 6 16 5 7 16 5 8 16 6 7 16 6 8 16 7 8

5 6 7 5 6 8 5 7 8 6 7 8 5 6 5 7 5 8

6 7 6 8 7 8 5 6 7 8

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x b x x x b x x x b x x x b x x x x x x

x x x x x x x x x x

     

     

      

     

 

Note: Glossary of E0 keystream generator is provided in Appendix D.  

                  ■ 



 67

APPENDIX B.  MAPLE 12 

Working in the Maple 12 environment and after running the detailed 

program, we found twelve superpolys, including the unknown variables of the 

four LFSRs for two consecutive clock times. The program was executed several 

times for testing purposes on an Intel Pentium 4 processor with a CPU of 2.80 

GHz and 1 GB of RAM, and the results were produced in a mean time of 8.03 

seconds, consuming 5.25 MB of memory.  

The structure of the program is simple. Using methods prod2 and prod3, 

we take the integers that represent the variables of the encryption function and 

concatenate them to create products of variables. The part method takes as an 

input any product of variables and returns its remainder and the cofactor 

(superpoly). The ptab method stores the results in a table. Then we iterate 

through the table and output every unique linear, nonconstant co-factor and their 

corresponding products (maxterms).  

In order to run this program one has to open a new worksheet in the 

Maple 12 environment and copy every paragraph that starts with the symbol “ >” 

and ends with symbol “;” of the following Maple code along with its contents and 

paste it to the worksheet. Then he or she has to press symbol “!!!” from the 

taskbar to compile the code and continually do this process up to the last line of 

code. Comments starting with the symbol “//” must not be entered in the 

worksheet as it will cause an error. 

MAPLE CODE 

// The encryption function of E0 in Algebraic Normal Form in Maple syntax 

> anf := a + b + c + d + X5*X6*a + X5*X6*b + X5*X6*c + 
X5*X6*d + X5*X7*a + X5*X7*b + X5*X7*c + X5*X7*d + X5*X8*a + 
X5*X8*b + X5*X8*c + X5*X8*d + X6*X7*a + X6*X7*b + X6*X7*c + 
X6*X7*d + X6*X8*a + X6*X8*b + X6*X8*c + X6*X8*d + X7*X8*a +  
X7*X8*b + X7*X8*c + X7*X8*d + X5*X6*X7*X8 + X5*a + X5*c + 
X5*d + X5*a*b + X5*b*c + X5*b*d + X6*a + X6*c + X6*d + 
X6*a*b + X6*b*c + X6*b*d + X7*a + X7*c + X7*d + X7*a*b + 
X7*b*c + X7*b*d + X8*a + X8*c + X8*d + X8*a*b + X8*b*c +  
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X8*b*d + X1 + X2 + X3 + X4 + X1*X5 + X1*X6 + X1*X7 + X1*X8 
+ X2*X5 + X2*X6 + X2*X7 + X2*X8 + X3*X5 + X3*X6 + X3*X7 + 
X3*X8 + X4*X5 + X4*X6 + X4*X7 + X4*X8  
+ X1*X5*b + X1*X6*b + X1*X7*b + X1*X8*b + X2*X5*b + X2*X6*b 
+ X2*X7*b + X2*X8*b + X3*X5*b + X3*X6*b + X3*X7*b + X3*X8*b 
+ X4*X5*b + X4*X6*b + X4*X7*b + X4*X8*b + X1*X5*X6 + 
X1*X5*X7 + X1*X5*X8 + X1*X6*X7 + X1*X6*X8 + X1*X7*X8 +  
X2*X5*X6 + X2*X5*X7 + X2*X5*X8 + X2*X6*X7 + X2*X6*X8 + 
X2*X7*X8 + X3*X5*X6 + X3*X5*X7 + X3*X5*X8 + X3*X6*X7 + 
X3*X6*X8 + X3*X7*X8 + X4*X5*X6 + X4*X5*X7 + X4*X5*X8 + 
X4*X6*X7 + X4*X6*X8 + X4*X7*X8 + X9*b + X10*b + X11*b + 
X12*b + X9*X5*c + X9*X6*c + X9*X7*c + X9*X8*c + X10*X5*c + 
X10*X6*c + X10*X7*c + X10*X8*c + X11*X5*c + X11*X6*c + 
X11*X7*c + X11*X8*c + X12*X5*c + X12*X6*c +  
X12*X7*c + X12*X8*c + X9*X5*c*b + X9*X6*c*b + X9*X7*c*b + 
X9*X8*c*b + X10*X5*c*b + X10*X6*c*b + X10*X7*c*b + 
X10*X8*c*b + X11*X5*c*b + X11*X6*c*b + X11*X7*c*b + 
X11*X8*c*b + X12*X5*c*b + X12*X6*c*b + X12*X7*c*b + 
X12*X8*c*b + X9*X5*X6*c + X9*X5*X7*c + X9*X5*X8*c + 
X9*X6*X7*c + X9*X6*X8*c + X9*X7*X8*c + X10*X5*X6*c + 
X10*X5*X7*c + X10*X5*X8*c + X10*X6*X7*c + X10*X6*X8*c +  
X10*X7*X8*c + X11*X5*X6*c + X11*X5*X7*c + X11*X5*X8*c + 
X11*X6*X7*c + X11*X6*X8*c + X11*X7*X8*c + X12*X5*X6*c + 
X12*X5*X7*c + X12*X5*X8*c + X12*X6*X7*c + X12*X6*X8*c + 
X12*X7*X8*c + X9*X10 + X9*X11 + X9*X12 + X10*X11 +  
X10*X12 + X11*X12 + X9*X10*X5 + X9*X10*X6 + X9*X10*X7 + 
X9*X10*X8 + X9*X11*X5 + X9*X11*X6 + X9*X11*X7 + X9*X11*X8 + 
X9*X12*X5 + X9*X12*X6 + X9*X12*X7 + X9*X12*X8 + X10*X11*X5 
+ X10*X11*X6 + X10*X11*X7 + X10*X11*X8 + X10*X12*X5 +  
X10*X12*X6 + X10*X12*X7 + X10*X12*X8 + X11*X12*X5 + 
X11*X12*X6 + X11*X12*X7 + X11*X12*X8 + X9*X10*X5*b + 
X9*X10*X6*b + X9*X10*X7*b + X9*X10*X8*b + X9*X11*X5*b + 
X9*X11*X6*b + X9*X11*X7*b + X9*X11*X8*b + X9*X12*X5*b +  
X9*X12*X6*b + X9*X12*X7*b + X9*X12*X8*b + X10*X11*X5*b + 
X10*X11*X6*b + X10*X11*X7*b + X10*X11*X8*b + X10*X12*X5*b + 
X10*X12*X6*b + X10*X12*X7*b + X10*X12*X8*b + X11*X12*X5*b + 
X11*X12*X6*b + X11*X12*X7*b + X11*X12*X8*b + X9*X10*X5*X6 + 
X9*X10*X5*X7 + X9*X10*X5*X8 + X9*X10*X6*X7 + X9*X10*X6*X8 +  
X9*X10*X7*X8 + X9*X11*X5*X6 + X9*X11*X5*X7 + X9*X11*X5*X8 + 
X9*X11*X6*X7 + X9*X11*X6*X8 + X9*X11*X7*X8 + X9*X12*X5*X6 + 
X9*X12*X5*X7 + X9*X12*X5*X8 + X9*X12*X6*X7 + X9*X12*X6*X8 + 
X9*X12*X7*X8 + X10*X11*X5*X6 + X10*X11*X5*X7 + 
X10*X11*X5*X8 + X10*X11*X6*X7 + X10*X11*X6*X8 + 
X10*X11*X7*X8 + X10*X12*X5*X6 + X10*X12*X5*X7 + 
X10*X12*X5*X8 + X10*X12*X6*X7 + X10*X12*X6*X8 +  
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X10*X12*X7*X8 + X11*X12*X5*X6 + X11*X12*X5*X7 + 
X11*X12*X5*X8 + X11*X12*X6*X7 + X11*X12*X6*X8 + 
X11*X12*X7*X8 + X13 + X14 + X15 + X16 + X13*X5 + X13*X6 +  
X13*X7 + X13*X8 + X14*X5 + X14*X6 + X14*X7 + X14*X8 + 
X15*X5 + X15*X6 + X15*X7 + X15*X8 + X16*X5 + X16*X6 + 
X16*X7 + X16*X8 + X13*X5*b + X13*X6*b + X13*X7*b  
+ X13*X8*b + X14*X5*b + X14*X6*b + X14*X7*b + X14*X8*b + 
X15*X5*b + X15*X6*b + X15*X7*b + X15*X8*b + X16*X5*b + 
X16*X6*b + X16*X7*b + X16*X8*b + X13*X5*X6 +  
X13*X5*X7 + X13*X5*X8 + X13*X6*X7 + X13*X6*X8 + X13*X7*X8 + 
X14*X5*X6 + X14*X5*X7 + X14*X5*X8 + X14*X6*X7 + X14*X6*X8 + 
X14*X7*X8 + X15*X5*X6 +  
X15*X5*X7 + X15*X5*X8 + X15*X6*X7 + X15*X6*X8 + X15*X7*X8 + 
X16*X5*X6 + X16*X5*X7 + X16*X5*X8 + X16*X6*X7 + X16*X6*X8 + 
X16*X7*X8 + X5*X6*X7*b + X5*X6*X8*b + X5*X7*X8*b + 
X6*X7*X8*b + X5*X6 + X5*X7 + X5*X8 + X6*X7 + X6*X8 +  
X7*X8 + X5 + X6 + X7 + X8; 
 
// prod2 & prod3 take integers and return a product of those X variables 
> prod2 := (n,m) -> cat(X,n) * cat(X,m); 

 
> prod3 := (n,m,o) -> cat(X,n) * cat(X,m) * cat(X,o); 

 
// parts takes a product p and returns a list of 2 parts: remainder and cofactor 
> parts := proc( p ) global anf; local l, z, t; 
l := coeffs( algsubs( p = z, anf ), z, 't' ); 
if nops([l]) = 1 then [l,0]; 
else if t[1] = 1 then [ l ]; 
else [ l[2], l[1] ]; 
end if; end if; end proc; 

 
 
// set up table "ptab" of these parts, indexed by the integers  
> ptab := table(); 

 
> for i to 15 do for j from i+1 to 16 do 
ptab[i,j] :=  parts( prod2(i,j) ) ; 
end do; end do; 
> for i to 14 do for j from i+1 to 15 do for k from j+1 to 
16 do 
ptab[i,j,k] :=  parts( prod3(i,j,k) ) ; 
end do; end do; end do; 
> degree(%); 
> degree(%); 
> for i in indices(ptab) do  
if ( degree( ptab[op(i)][2]) = 1 ) then 
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print(i);print(ptab[op(i)][2]);print(ptab[op(i)][1]); end 
if; end do; 
> whattype(indices(ptab)); 
> linfac := select( i -> ( degree( ptab[op(i)][2]) = 1 ), 
[indices(ptab)] ): 
> nops(linfac); 

 
> ptab[op(linfac[1])][2]; 

 
> sort([seq( ptab[op(i)][2], i in linfac)]); 

 

> linfacs := convert(%,set); 
 

> linfacs := convert(linfacs, list); 
 

> nops(linfacs); 
> for fac in linfacs do  
print(fac);  
for i in linfac do 
if ( ptab[op(i)][2] = fac ) then print(i); end if;  
end do;  
end do; 
 
 
Note: In order for one to add comments to the worksheet from the Insert menu of 

the taskbar, one has to select Paragraph, and then select Before Cursor or After 

Cursor. A new paragraph is inserted and the cursor is moved to the new blank 

line. From there, one can enter the paragraph.  
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APPENDIX C.  PROGRAM OUTPUT 

Maple 12 works on Windows (2000, 2003, XP, Vista), Macintosh, UNIX, 

Linux and Solaris environments. The developers’ system recommendations 

include the following: 

 CPU: AMD X86_64/ 1 GHz/Intel Xeon/ Intel 64 

 RAM: 512MB (at least) 

 Hard disk: 1 GB 

The program outlined in Appendix B was executed on an Intel Pentium 4 

processor with a CPU of 2.80 GHz and 1 GB of RAM in a Windows XP 

environment. The output of the program is in the following paragraph where the 

linear term without any bracket represents the superpoly and the terms inside the 

brackets represent the corresponding index of the variables of the corresponding 

superpoly. For example, the superpoly 5x b  has only one maxterm, 6 7 8x x x , 

whereas the superpoly 9 11 12x x x c    has as maxterms the terms 

5 6 10, 6 7 10, 5 7 10, 6 8 10, 5 8 10, 7 8 10.x x x x x x x x x x x x x x x x x x  

OUTPUT 
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APPENDIX D.  GLOSSARY OF BLUETOOTH KEY STREAM 
GENERATOR E0 

cK ……………………………………………………………….. Encryption Key 

COF …………………………………………………Encryption Offset Number 

OR…………………………………………………………………….Bitwise OR 

XOR……………………………………………………….Bitwise Exclusive OR 

LSFR…………………………………………..Linear Feedback Shift Register 

CLK……………………………………………………………Master Clock Bits 

i
tx ……………………………………….Output bit of the iLFSR at clock-time t 

4

1

i
t t

i

y x


  ………Summation outcome (integer) from the output bits of the 

four LFSRs at clock-time t  

tz ………………………………keystream bit produced by E0 at clock-time t 

1tz  …………………………..keystream bit produced by E0 at clock-time t+1 

2tz  ………………………… keystream bit produced by E0 at clock-time t+2 

3tz  …………………………..keystream bit produced by E0 at clock-time t+3 

tc ……………………………...………………Four Memory bits at clock-time t 

1
tc ………………………...Current two-bit block of Memory bit at clock-time t 

0
tc …………………………...…Two-bit block of Memory bits at clock-time t-1 

ts ………………………………………………………………Two-bit sequence 

1
ts ………………………………………...........First bit of the two-bit sequence 
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0
ts ……………………………..……………Second bit of the two-bit sequence 

tq ……….First bit of the current two-bit block of Memory bits at clock time t 

tp …...Second bit of the current two-bit block of Memory bits at clock time t 

1tq  …………….First bit of the two-bit block of Memory bits at clock time t-1 

1tp    ………Second bit of the two-bit block of Memory bits at clock time t-1 

i
t      ………………………the i-th elementary symmetric polynomial in i

tx  

1 2 3 4, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t respectively. 

5 6 7 8, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t+1 

respectively. 

9 10 11 12, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t+2 

respectively. 

13 14 15 16, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t+3 

respectively. 

a……………………………keystream bit produced by E0 at clock-time t, tz  

b………………………keystream bit produced by E0 at clock-time t+1, 1tz   

c………………………keystream bit produced by E0 at clock-time t+2, 2tz   

d………………………..keystream bit produced by E0 at clock-time t+3, 3tz   
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